
DIURETICS Part 1

Prof. Hanan Hagar Pharmacology Unit

Diuretics

Definition

- Are drugs that increase urine volume.
- **Diuresis:** is the process of excretion of <u>water</u> in the <u>urine</u>.
- All diuretics have **naturetic** effect.

Natriuresis:

o is the process of **sodium excretion** in the urine.

INDICATIONS of DIURETICS

Edema of any origin

Congestive heart failure

Hypertension

Elimination of toxins

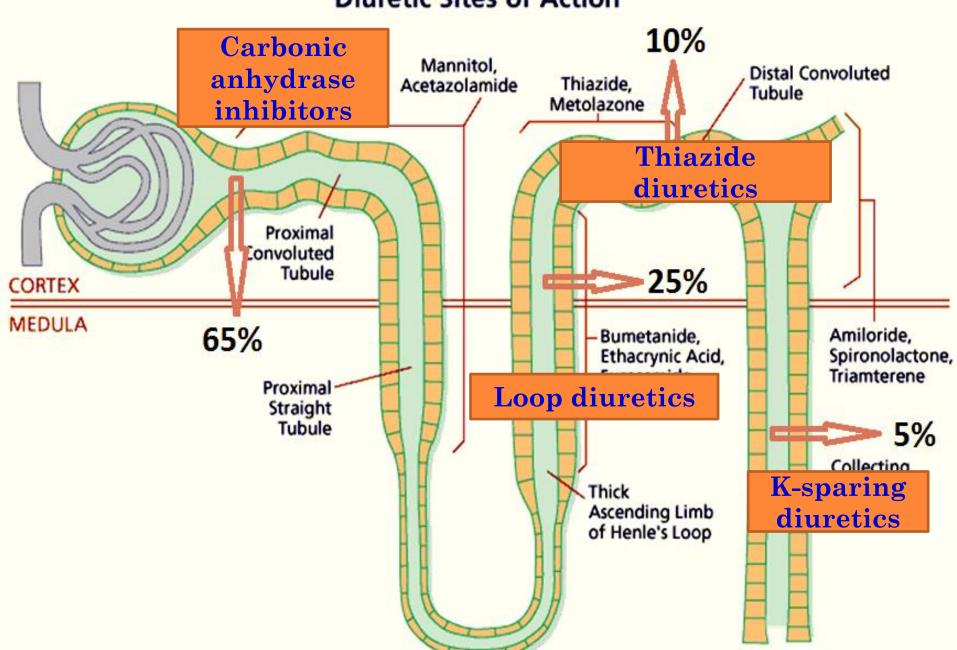
Mechanism of actions of diuretics

How diuretics produce their effects?

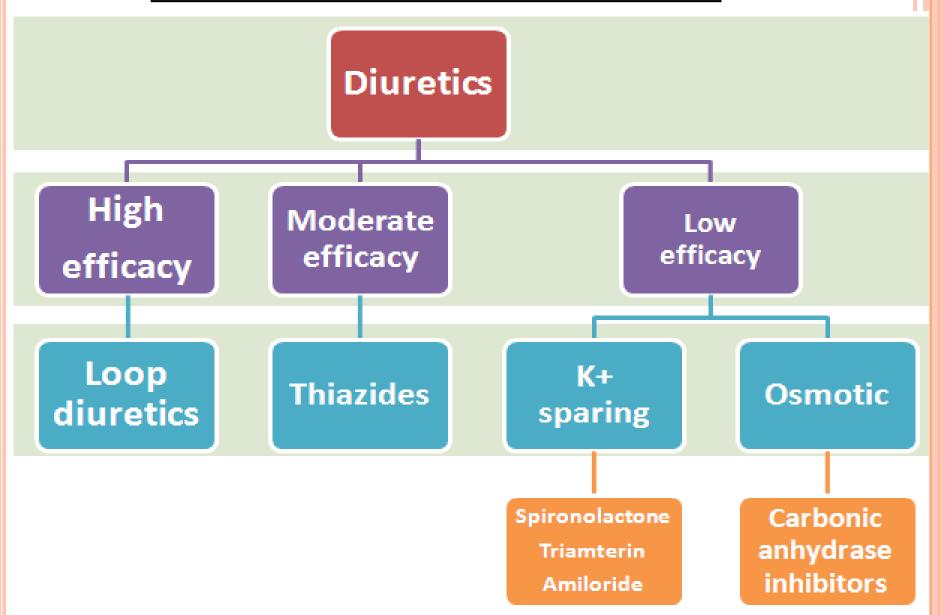
- Most diuretics act by interfering with the normal sodium reabsorption by the renal tubules resulting into sodium and water excretion.
- Target molecules for diuretics are <u>carriers or</u> <u>transporters</u> in luminal membrane of renal <u>tubular cells</u> required for tubular reabsorption of sodium from filtrate back into blood.

Normal Sodium Re-absorption

	<u> </u>	
Nephron Segment	Na ⁺ Transporter	Filtered Na ⁺ re- absorbed
Proximal convoluted tubules	Na ⁺ /H ⁺ transporter Carbonic anhydrase enzyme	65 % As NaHCO3
Ascending Loop of Henle	Na ⁺ /K ⁺ /2Cl ⁻ cotransporter	20-30% Active reabsorption Na, K, Cl
Distal convoluted tubules	Na ⁺ /Cl ⁻ transporter	5-10% Active reabsorption Na, Cl
Cortical Collecting Tubules	Na ⁺ channel Aldosterone Antidiuretic hormone	5% Na reabsorption K & H secretion


Types of diuretics

Nephron Segment	Na ⁺ Transporter	Diuretics
Proximal convoluted tubules	Na+/H+ transporter <u>Carbonic anhydrase</u> <u>enzyme</u>	Carbonic anhydrase inhibitors
Ascending Loop of Henle	Na ⁺ /K ⁺ /2Cl ⁻ cotransporter	Loop diuretics
Distal convoluted tubules	Na ⁺ /Cl ⁻ transporter	Thiazide diuretics
Cortical Collecting Tubules	Na ⁺ channel Aldosterone	K-sparing diuretics


Classification of diuretics

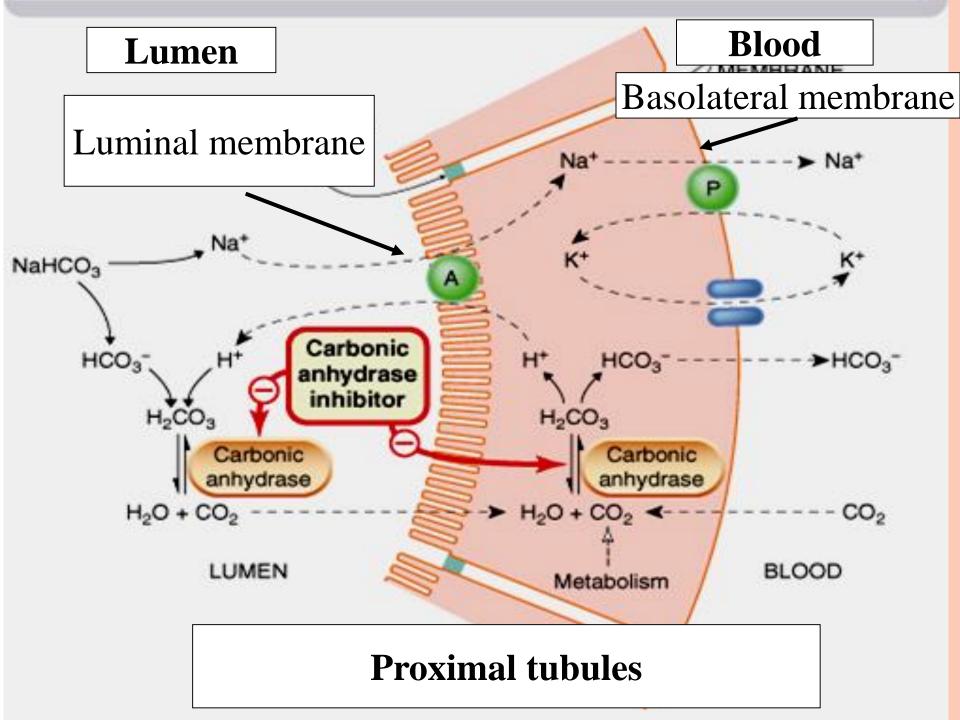
- Carbonic anhydrase inhibitors
- Loop diuretics
- Thiazide diuretics
- Potassium-sparing diuretics
- Osmotic diuretics

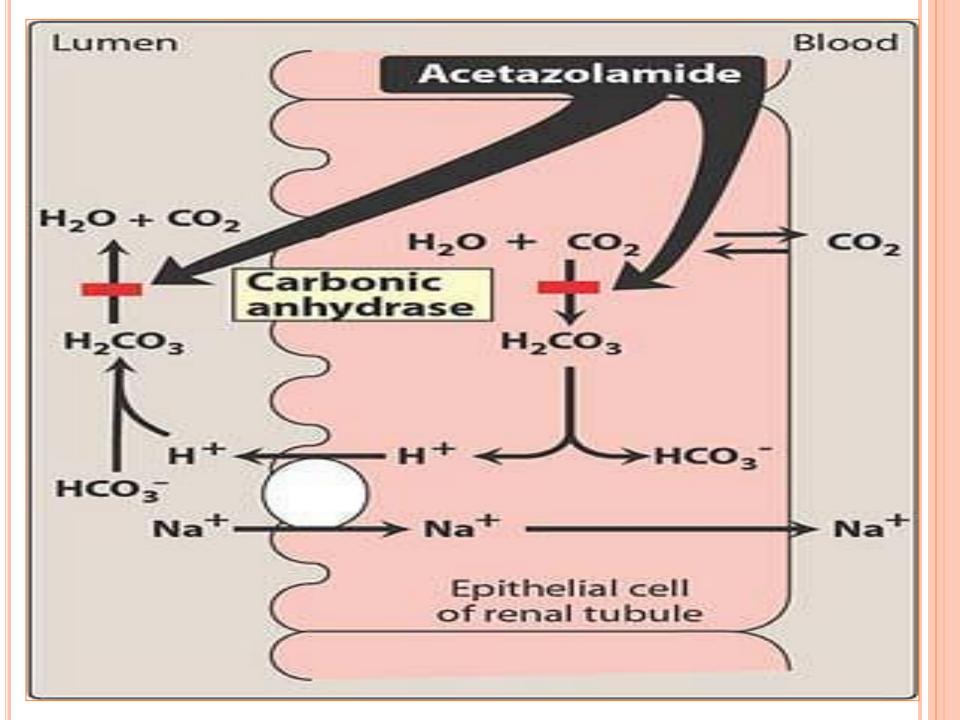
Diuretic Sites of Action

Classification of diuretics

Carbonic Anhydrase Inhibitors

Drugs: Acetazolamide – dorzolamide


Mechanism of action:

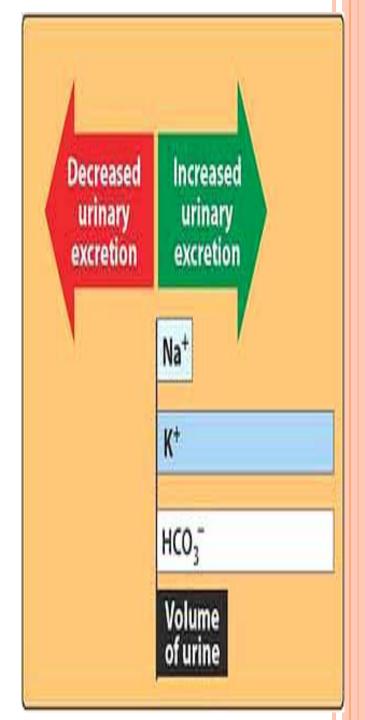

Inhibits carbonic anhydrase (CA) enzyme in proximal convoluted tubules thus interferes with NaHCO3 re-absorption and causes diuresis.

Carbonic Anhydrase Inhibitors

Carbonic anhydrase is required for reversible reaction in which

$$CO2 + H2O \longrightarrow H2CO3 \longrightarrow H^+ + HCO3^-$$

Pharmacokinetics of acetazolamide:


- given orally once a day.
- Onset of action is rapid (30 min).
- Duration of action (9-12 h).
- Excreted by active secretion in proximal convoluted tubules.
- Produces alkaline urine

Pharmacological actions:

- † Mild increase in urine volume
- † urinary excretion of sodium, potassium, bicarbonate (alkaline urine).
- Metabolic acidosis.
- ↑ Urinary phosphate excretion.
- Promotes K+ excretion by \tautathereone load of Na+ delivered to the distal tubules.

Why do CA inhibitors have weak diuretic properties?

Diuretic properties decreases after several days as the blood bicarbonate falls.

Dorzolamide

- Is a carbonic anhydrase inhibitor
- Used topically for treatment of openangle glaucoma.
- no diuretic or systemic side effects (Why?)

Therapeutic uses:

Open angle glaucoma

carbonic anhydrase inhibitors decrease aqueous humour formation and \ IOP by reducing aqueous humor formation in ciliary body of eye.

oAs prophylactic therapy, in acute mountain sickness ↓ CSF of brain

given nightly 5 days before the ascent \upselow weakness, breathlessness, dizziness, nausea, cerebral & pulmonary oedema.

IOP: Intraocular pressure; CSF: Cerebrospinal fluid

Therapeutic uses:

Formation of CSF:

(↓ of carbonic anhydrase in the choroid plexus→↓formation of CSF. Useful in treating benign intracranial hypertension).

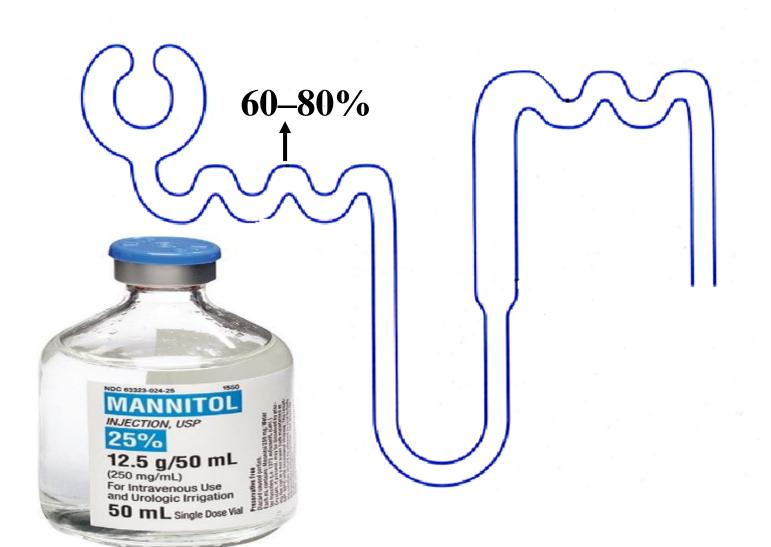
• Urinary alkalinization to enhance renal excretion of acidic substances (uric acid, methotrexate and cysteine in cystinuria).

Hyperphosphatemia

Therapeutic uses:

Adjunct for treatment of epilepsy:

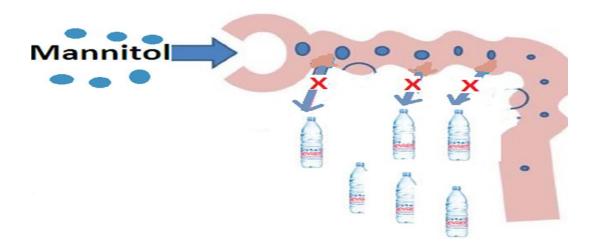
Glial cells contain carbonic anhydrase. Nerves are highly responsive to rise in pH $7.4 \rightarrow 7.8$ causes convulsions. \downarrow neuronal carbonic anhydrase $\rightarrow \downarrow$ pH in the vicinity of neurons $\rightarrow \downarrow$ convulsions.


Metabolic alkalosis

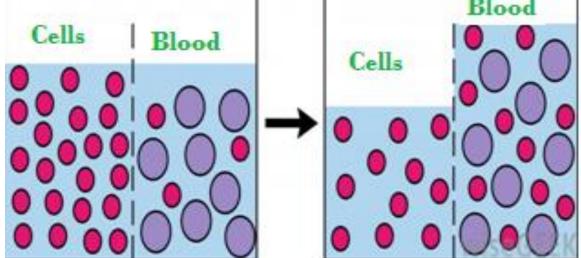
Useful for correcting a metabolic alkalosis, especially an alkalosis caused by diuretic-induced increases in H⁺ excretion & metabolic alkalosis of heart failure.

Adverse effects:

- Hypokalemia (potassium loss).
- Metabolic acidosis.
- Renal stone formation (calcium phosphate stones).
- Hypersensitivity reaction.


Osmotic diuretics

Osmotic diuretics


Mannitol:

- Poorly absorbed
- If given orally —— osmotic diarrhea
- Given intravenously
- Not metabolized
- Excreted by glomerular filtration without being re-absorbed or secreted within 30-60 min

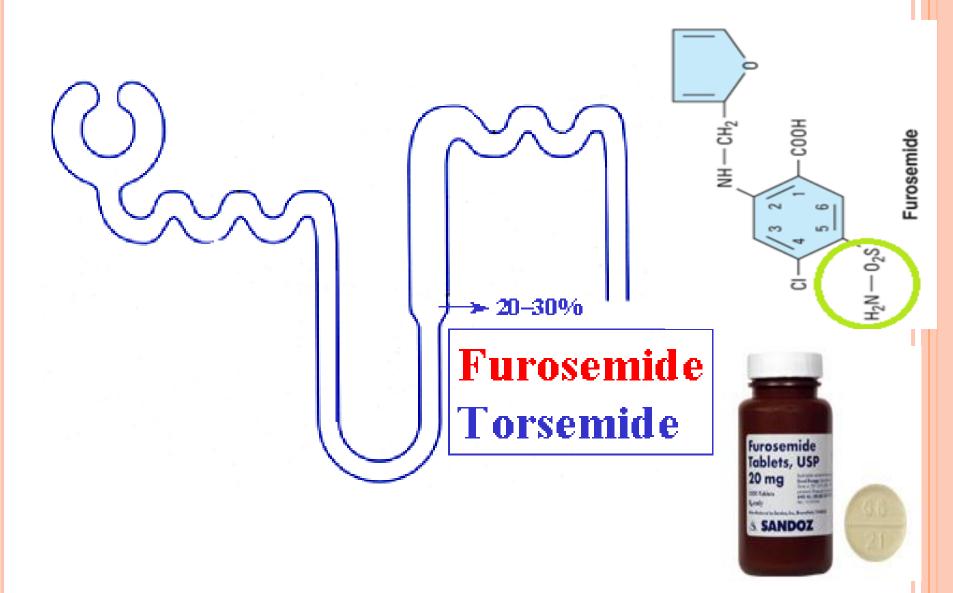
Mannitol

- •Acts in proximal tubules & descending loop of Henle by osmotic effect.
- Mannitol increases urine output by osmosis, drawing water out of cells and into the blood stream.

- oIV administration of mannitol exert an osmotic pressure →↓water & Na+ reabsorption.
- otwater excretion with relatively less effect on Na+.
- o Expand the extracellular fluid volume, decrease blood viscosity, and inhibit renin release, ↑renal blood flow.

Therapeutic Uses:

- Acute renal failure due to shock or trauma (maintain urine flow- preserve kidney function).
- •To maintain urine volume & prevent anuria resulting from large pigmentation load to the kidney **e.g.** hemolysis, rhabdomyolysis
- •In acute drug poisoning: To eliminate drugs that are reabsorbed from the renal tubules e.g. salicylates, barbiturates.
- To ↓ intracranial & intraocular pressure before ophthalmic or brain procedures (**cerebral edema**).


Adverse Effects:

- Headache, nausea, vomiting
- Extracellular volume expansion, complicates heart failure & pulmonary oedema
- **Lexapproximate 4 Excessive use→ dehydration & hypernatraemia** (Adequate water replacement is required).

Contraindication:

♣ Chronic heart failure

Loop Diuretics

LOOP DIURETICS High Ceiling diuretics

• The most potent diuretic, termed "high ceiling diuretic"

Efficacy:

High natriuresis as 25-30% Na⁺ is reabsorbed.

- o Drugs as:
 - Furosemide Torsemide
 - Bumetanide Ethacrynic acid

Loop Diuretics High Ceiling Diuretics

Bumetanide

Potency40 ,t1/2 0.8 h

Ethacrynic Acid

Potency 0.7, t1/2 1h

Furosemide

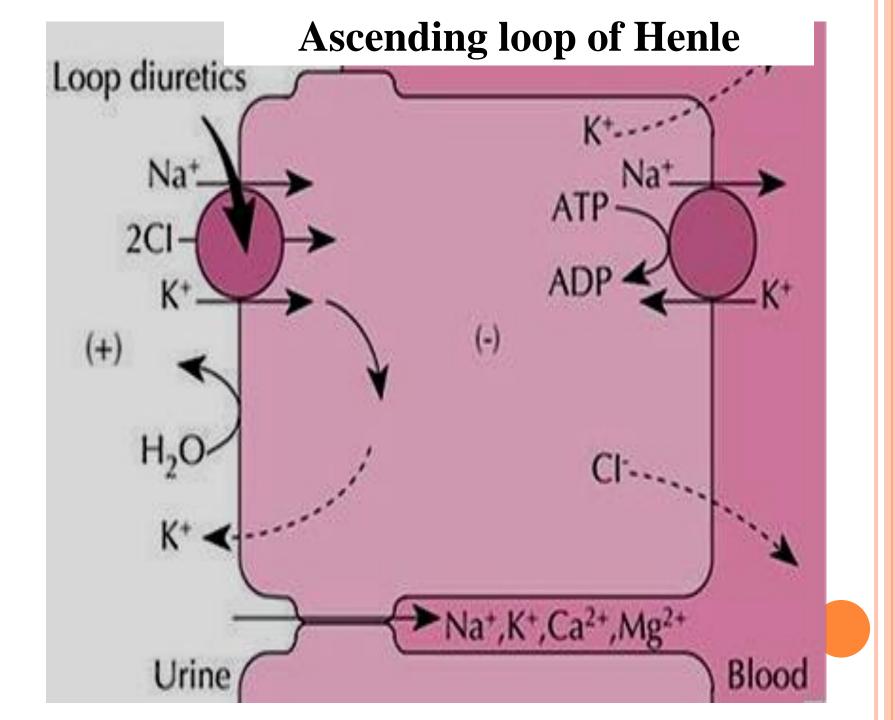
Potency 1, t½ 1.5h

Torsemide

Potency 3, t½ 3.5h

LOOP DIURETICS

Mechanism:

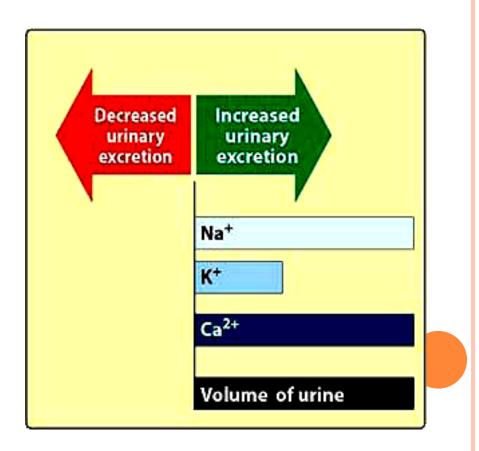

- inhibit Na⁺ / K⁺ / 2 Cl⁻ co-transporter in the luminal membrane of the thick ascending loop of Henle (TAL).
- o inhibit Ca⁺⁺ and Mg ⁺⁺ re-absorption.

Ascending loop of Henle

• Is impermeable to water

Thick ascending loop of Henle (TAL)

- is responsible for active re-absorption of Na, K and Cl (25-30% Na⁺ is reabsorbed) via transport system in luminal membrane called Na⁺/ K⁺ / 2Cl⁻ co-transporter
- Ca and Mg are reabsorbed and enter the interstitial fluid via paracellular pathway



Pharmacokinetics

- Given orally or I. V.
- Have fast onset of action (<u>suitable for</u> <u>emergency</u>)
- Have short duration of action.
- Excreted by active tubular secretion of weak acids into urine
- Interfere with uric acid secretion (hyperuricemia).

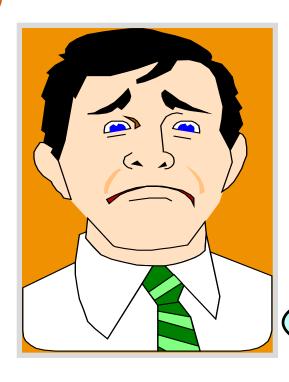
Pharmacological effects:

- o↑ urinary excretion of Na⁺ and K⁺
- o↑ urinary excretion Ca⁺⁺ and Mg ⁺⁺
- o↑ urine volume
- ↑ renal blood flow.

Uses:

are drug of choice for emergency situations as:

- Edema associated with congestive heart failure, nephrotic syndrome
- Acute pulmonary edema
- Acute hyperkalaemia.
- Acute hypercalcemia


ADVERSE EFFECTS

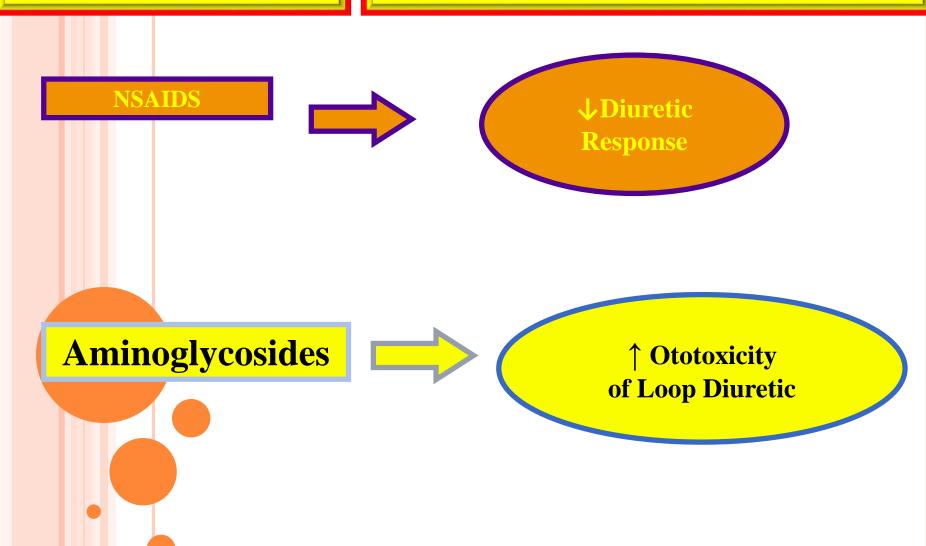
Volume Depletion

Hypokalemia

Hypocalcaemia

Hypomagnesaemia

Metabolic Alkalosis


Ototoxicity

Hyperuricemia

Hyperglycemia

LOOP DIURETICS

DRUG-DRUG INTERACTIONS

Adverse effects:

- **Hypo**volemia
- **Hypo**natremia (↓ blood Na⁺).
- **Hypo**kalemia (↓ blood K⁺)
- **Hypo**magnesaemia (↓ blood Mg²⁺)
- **Hypo**calcaemia (↓ blood Ca²⁺)
- Metabolic alkalosis.
- Postural hypotension
- **Hyper**uricemia (increase blood uric acid and gouty attack).
- Ototoxicity (risk increased if combined with aminoglycosides)
- Allergic reactions
- Dietary K supplementation or K-sparing diuretics should be used to avoid hypokalemia.

Thiazide diuretics

Drugs as:

- Chlorothiazide
- Hydrochlorothiazide
- Chlorthalidone
- Metolazone
- Indapamide

THIAZIDE DIURETICS

Chlorothiazide Potency 0.1, t½ 2h Chlorthalidone Potency 10, t½ 26h

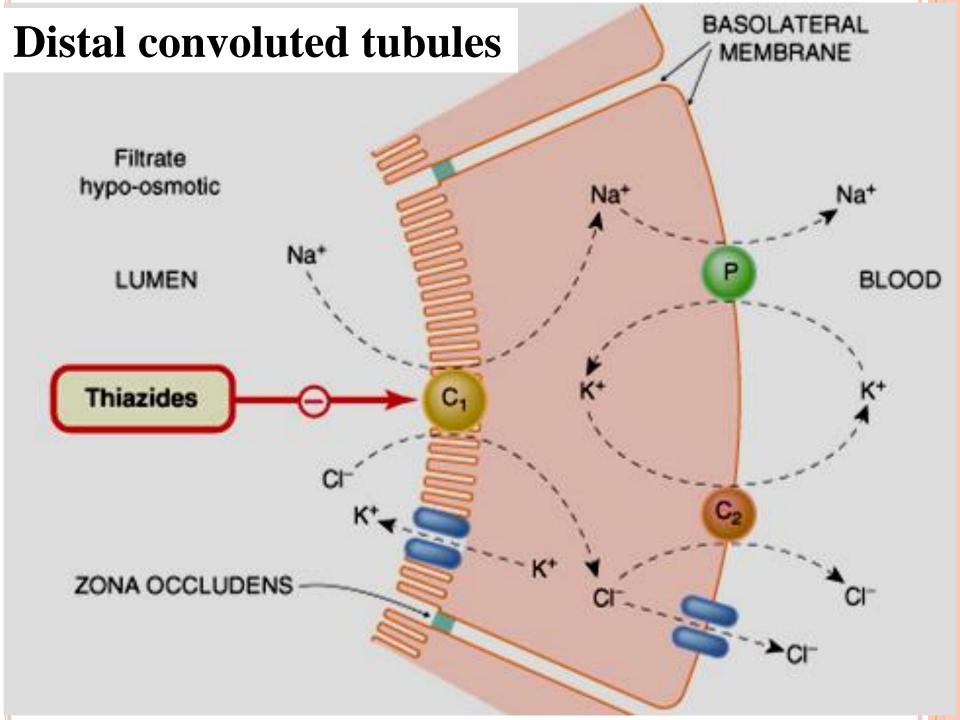
Metolazone

Potency 5, t½ 5h

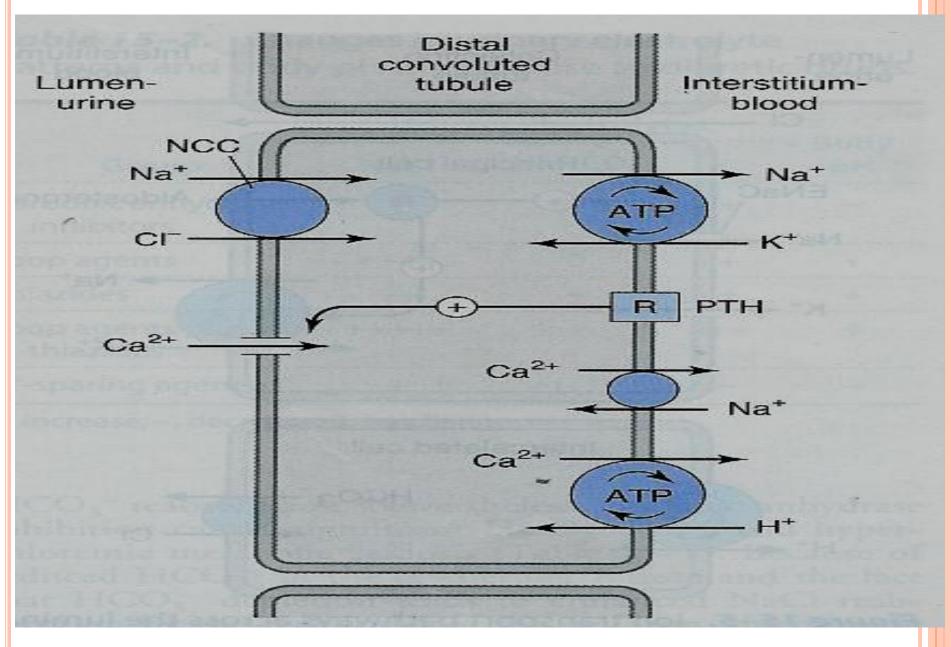
Hydrochlorothiazide

Potency 1, t½ 3h

Indapamide


Potency 20, t1/2 16h

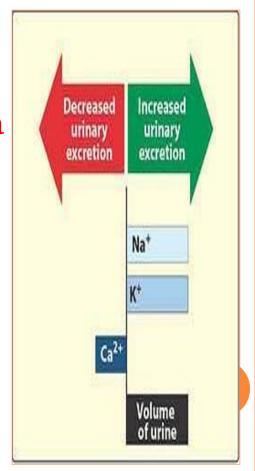
Thiazide diuretics


Mechanism of action:

• acts via inhibition of Na/Cl co-transporter on the luminal membrane of distal convoluted tubules.

• Efficacy: Moderate natriuresis (5-10% of filtered load of sodium is reabsorbed).

Mechanism of action of thiazide diuretics



Pharmacokinetics:

- Given orally, slow of onset
- long duration of action (40 h)
- are secreted by active tubular secretory system of the kidney
- may interfere with uric acid secretion and cause hyperuricemia

Pharmacological effects:

- **†** urinary NaCl excretion
- ↑ urinary K excretion (Hypokalemia)
- **♦** urinary magnesium excretion
- urinary calcium excretion
 - calcium re-absorption hypercalcemia

Uses:

- Treatment of essential hypertension (cheap-well tolerated).
- Treatment of mild heart failure (to reduce extracellular volume).
- Treatment of osteoporosis
- Calcium nephrolithiasis due to hypercalciuria (to increase calcium re-absorption and decrease renal calcium stones)
- Nephrogenic diabetes insipidus (decrease blood volume and GFR)

Mechanism of antidiuretic effect of thiazide in diabetes insipidus Thiazide Urine volume Distal delivery of Na+ & Distal tubular Na+ **!** reabsorption Proximal Na+& Water reabsorption Extracellular

Adverse effects:

- Fluid and electrolyte imbalance
- Hyponatremia
- **Hypo**volemia (volume depletion)
- **Hypo**kalemia
- Metabolic alkalosis.
- **Hyper**uricemia (gout)
- **Hyper**calcemia
- Hyperglycemia
- **Hyper**lipidemia

ADVERSE EFFECTS

Volume Depletion

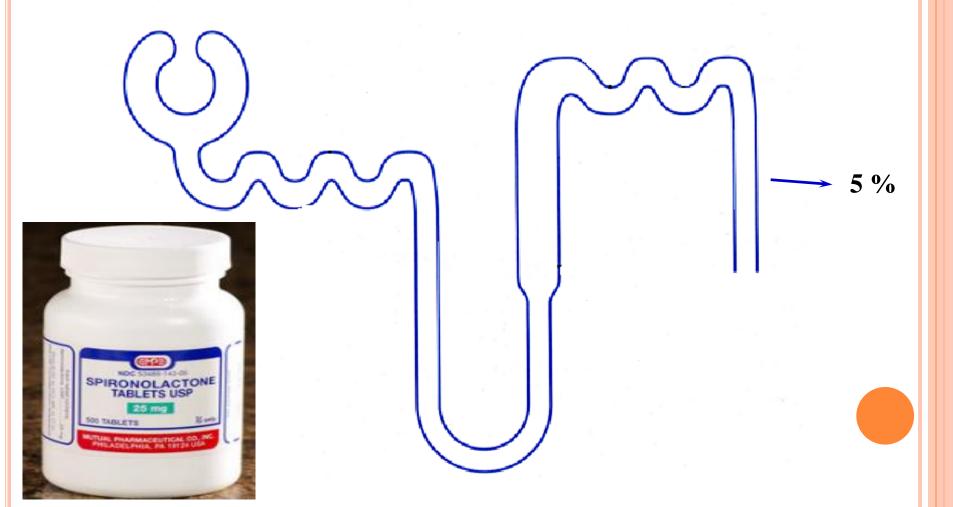
Hypokalemia

Hypercalcaemia

Hypomagnesaemia

Metabolic Alkalosis

Hyperuricemia


Hyperglycemia

Hyperlipidemia

Potassiumsparing diuretics

Spironolactone Amiloride Triamterene

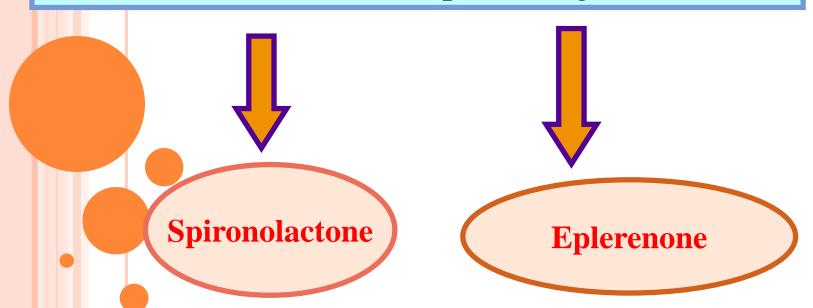
Potassium-sparing diuretics

Steroids

Nonsteroids

Competitive aldosterone antagonists

Spironolactone Eplerenone

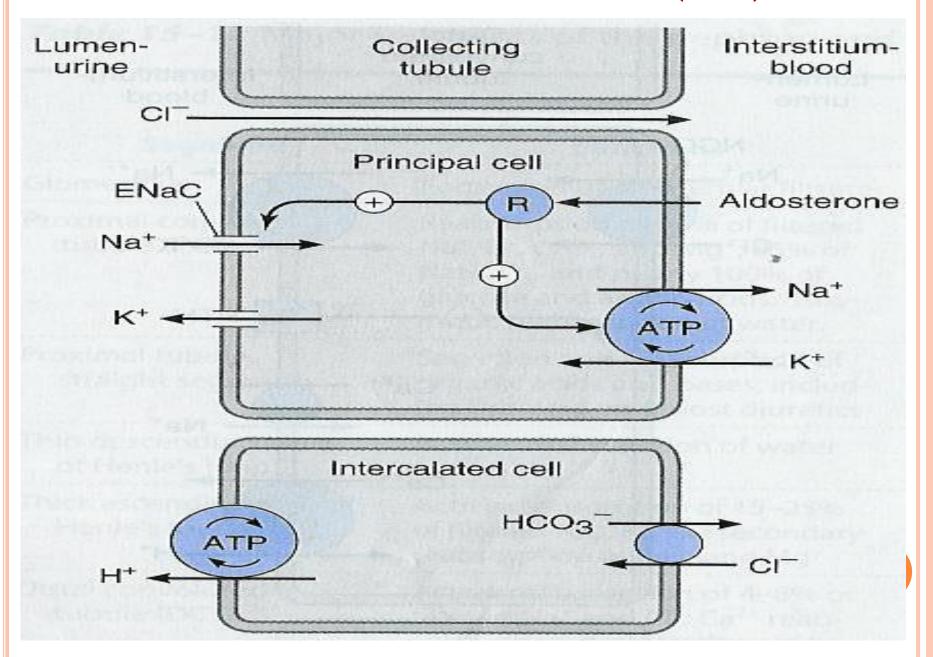

Na⁺ channels inhibitors

- Amiloride
- Triamterene

Aldosterone Antagonists

Also Called:

- •K-Sparing Diuretics
- •Mineralocorticoid receptor antagonists


Mechanism of action

Spironolactone:

act at the <u>collecting duct</u> by competitive inhibition of cytoplasmic aldosterone receptors $\rightarrow \uparrow$ Excretion of

Na+, Cl⁻ & ↓Excretion of K+,H+

COLLECTED TUBULES (CT)

Pharmacokinetics of spironolactone

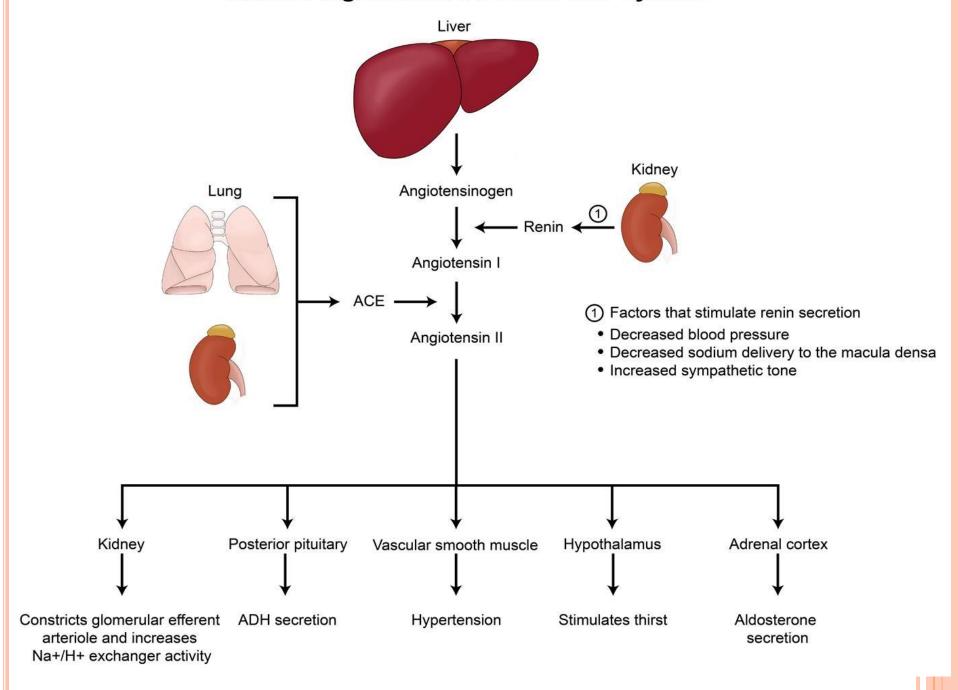
- •Well absorbed from the GIT
- Highly protein-bound
- Undergoes enterohepatic recycling
- •Delayed onset of action (nuclear receptor), maximum diuretic action 4 days.
- Converted in the gut & liver to active metabolite, $t^{1/2}=16h$

Pharmacodynamics:

- of urinary Na⁺ excretion
- ourinary K⁺ excretion Hyperkalemia
- H⁺ excretion (acidosis).
- has antiandrogenic action.

Therapeutic uses:

Treatment of hypertension


Usually used combined with thiazide or loop diuretics to:

- 1) Enhances natriuresis caused by other diuretics
- 2) Correct for hypokalemia.

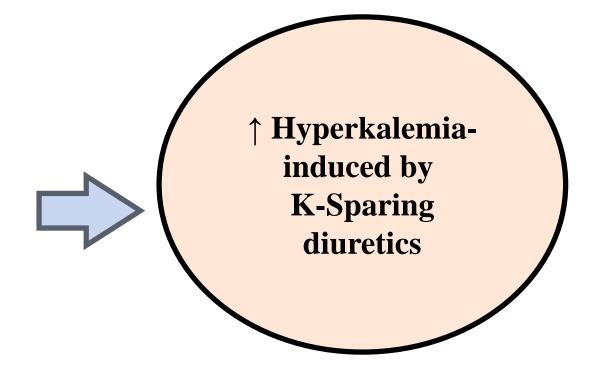
Therapeutic uses of aldosterone antagonists:

- •Treatment of primary hyperaldosteronism (Conn's syndrome)
- Treatment of hirsutism, acne due to the antiandrogenic effects.
- Treatment of secondary hyperaldosteronism in diseases as
 - o CHF
 - Edema of hepatic cirrhosis
 - Nephrotic syndrome

Renin-Angiotensin-Aldosterone System

Adverse Effects

- Hyperkalemia.
- Metabolic acidosis.
- Gynecomastia
- Impotence
- Menstrual irregularities
- GIT upset and peptic ulcer



Contraindications:

- Hyperkalemia:
 - o chronic renal failure
 - K+ supplement use
 - β-blockers
 - ACE inhibitors.
- Liver disease (dose adjustment is needed).

Drug -Drug Interactions

ACE Inhibitors
Beta-Blockers
K Supplements
K-Sparing
Diuretics

Potassium-sparing diuretics

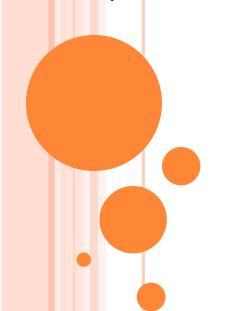
Na⁺ channels inhibitors

- **Amiloride**
- **OTriamterene**

SODIUM CHANNEL INHIBITORS

Triamterene Potency 0.1, t1/2 4.2 h,

Amiloride Potency 1, t½ 21h,


Mechanism of action

• Inhibition of Na influx through direct blockade of the epithelial sodium channel (ENaC) on the lumen side of the kidney collecting tubule (triamterene – amiloride).

USES OF SODIUM CHANNEL INHIBITORS

- OUsed in Combination with Loop & Thiazide Diuretics
- Treatment for lithium-Induced Diabetes Insipidus

ADVERSE EFFECTS

Hyperkalemia

CONTRAINDICATIONS OF SODIUM CHANNEL INHIBITORS

Triamterene & amiloride

The risk of developing **hyperkalemia** is increased in patients who are also on <u>ACE inhibitors</u>, <u>angiotensin II</u> receptor antagonists, other <u>potassium-sparing diuretics</u>, or any potassium-containing supplements.

Therapeutic applications of diuretics

Treatment of hypertension:

- Thiazide diuretics
- used alone or in combination with betablockers at low-dose (fewer side effects)
- In presence of renal failure, loop diuretic is used.

Therapeutic applications of diuretics

Edema States

- Thiazide diuretic is used in mild edema with normal renal function
- Loop diuretics are used in cases with impaired renal function.

Congestive Heart failure

- Thiazides may be used in only mild cases with well-preserved renal function
- Loop diuretics are much preferred in severe cases especially when GF is lowered
- In life-threatening acute pulmonary edema, furosemide is given IV.

Renal failure

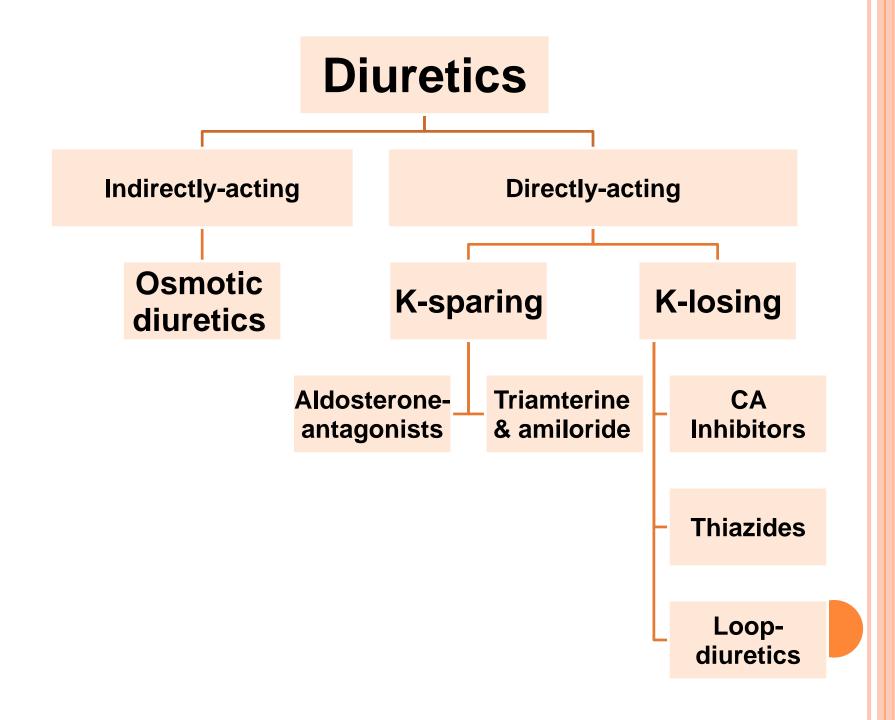
- \triangleright Thiazides are used till GFR $\ge 40-50$ ml/min
- ➤ Loop diuretic are used below given values, with increasing the dose as GFR goes down.

Diabetes inspidus

Large volume (>10 L/day) of dilute urine thiazide diuretics reduces urine volume

Hepatic cirrhosis with ascites

> **Spironolactone** is the drug of choice.


Site of action of diuretics

segment	Function	transporter	Diuretics
Proximal convoluted tubules	Re-absorption of 66% Na, K, Ca, Mg, 100% glucose and amino acids; 65% NaHCO3	Na/H transporter, Carbonic anhydrase enzyme	Carbonic anhydrase inhibitors
Proximal Straight Tubules	Secretion and reabsorption of organic acids and bases	Acid & base transporter	None
Thick ascending loop	Active reabsorption 25% Na, K, Cl Secondary Ca, Mg reabsorption	Na/K/2Cl transporter	Loop diuretics
Distal convoluted tubules	Active tubular reabsorption of 5%Na, Cl, Ca	Na and Cl cotransporter	Thiazide diuretics
Collecting tubules	Na reabsorption K & H secretion	Na channels K & H transporter	K-sparing diuretics

Diuretics	Mechanism of action	Effects
CA inhibitors Acetohexamide Dorzolamide	Inhibition of NaHCO3 reabsorption in PCT	↑ Urinary Na HCO3, K Urinary alkalosis Metabolic acidosis
Osmotic diuretic Mannitol	Osmotic effect in PCT	↑Urine excretion ↑ Little Na
Loop diuretics Furosemide	Na/K/2Cl transporter in TAL the most effective	↑Urinary Na, K, Ca, Mg
Thiazide diuretics hydrochlorothiazide	Na and Cl cotransporter in DCT	↑Urinary Na, K, Mg BUT↓ urinary Ca (hypercalcemia) Metabolic alkalosis
K-sparing diuretic Spironolactone.	competitive antagonist of aldosterone in CCT	↑ Urinary Na ↓ K, H secretion Metabolic acidosis

Diuretics	Uses
CA inhibitors Acetohexamide Dorzolamide (topically) for glaucoma	Glaucoma, epilepsy Mountain sickness Alkalosis Phosphatemia
Osmotic diuretic Mannitol	 Cerebral edema, glaucoma Acute renal failure, drug toxicities
Loop diuretics Furosemide	Acute pulmonary edema (Drug of choice) Heart failure Hyperkalemia, Hypercalcemia
Thiazide diuretics hydrochlorothiazide	Commonly used Hypertension, mild heart failure, nephrolithiasis, diabetes inspidus
K-sparing diuretic Spironolactone.	Hepatic cirrhosis (Drug of choice)

Diuretics	Side effects
CA inhibitors Acetohexamide Dorzolamide	Metabolic acidosis , Urinary alkalosis Hypokalemia
Osmotic diuretic Mannitol	Extracellular water expansion Dehydration Hypernatremia
Loop diuretics Furosemide	Hypokalemia, hypovolemia, hyponatremia, hypomagnesemia, hypocalcemia Precipitate gout, alkalosis
Thiazide diuretics hydrochlorothiazide	Hypokalemia, hyponatremia, hypovolemia, hypomagnesemia, hypercalcemia Alkalosis, precipitate gout Hyperlipidemia, hyperglycemia
K-sparing diuretic Spironolactone.	Gynaecomastia Hyperkalaemia , Metabolic acidosis. GIT upset and peptic ulcer

