

ACID-BASE BALANCE

Dr. Maha Saja MBBS, MSc Physiology, PhD msaja@ksu.edu.sa

Objectives

- Define: acid and base.
- Explain what is meant by strong and weak acids and bases.
- List and identify the names/formulas for the common strong acids and strong bases.
- To explain the role of Henderson-Hasselbalch equation in acidbase regulation.
- To define buffer system and discuss the role of blood buffers and to explain their relevant roles in the body.
- To describe the role of kidneys in the regulation of acid-base balance.
- To describe the role of lungs in the regulation of acid-base balance.

Contents

- What are acids and bases?
- What is meant by a weak and a strong acid or base?
- What is the normal pH of body fluids?
- Why is it important to keep body fluid pH within certain limits?
- What are the body's defense mechanisms against changes in blood pH: body buffers, the lungs and the kidney.
- Understand the role of the kidney in regulating pH of body fluids.

- Acid-base balance is concerned with the precise regulation of free (unbound) hydrogen ion (H⁺) concentration in body fluids.
- Normally, $[H^+] = 0.00004 \text{ mEq/L} (40 \text{ nEq/L}).$
- Why is it important to control [H⁺]?

(Sherwood L. Human physiology: from cells to systems. 4th ed. 2001; Guyton & Hall. Textbook of medical physiology. 13th ed.)

Why Should [H⁺] be Tightly Controlled?

- Slight deviations in [H⁺] have profound effects on enzyme and protein activity and thus the body's metabolic activity in general.
- Changes in [H⁺] affects K⁺ levels in the body.

Why is the Body's [H⁺] Constantly Changing?

A number of processes can alter [H⁺] concentration in the body, such as;

- 1. Metabolism of ingested food.
- 2. GI secretions.
- 3. Generation of acids & bases from amino acid/protein metabolism.
- 4. Changes in CO_2 production.

Acid-Base Fundamentals

- **An Acid** = a molecule that can release H⁺ in a solution.
 - H₂CO₃ (carbonic acid)
 - HCI (hydrochloric acid)
- A base = a molecule that accepts H⁺ in a solution.
 - Bicarbonate ions (HCO₃-).
 - Hydrogen phosphate (HPO₄⁻²)
- What is the difference between carbonic & hydrochloric acid?

Strong vs Weak Acids & Bases

Strong acids dissociate rapidly and release large amounts of H⁺ in solution Weak acids dissociate incompletely and less strongly releasing small amounts of H⁺ in solution

Weak Acids

$\mathbf{A}\mathbf{H} \leftrightarrow \mathbf{A}^- + \mathbf{H}^+$

Acid \leftrightarrow Conjugate base + H^+

The extent to which a given acid dissociates in solution is constant. And is known as the *dissociation constant (K)*.

$$K = \frac{[H^+][A^-]}{[AH]}$$

 $H_2CO_3 \leftrightarrow HCO_3 - + H^+ \longrightarrow K = \frac{[H^+][HCO_3^-]}{[H_2CO_3]}$

[H⁺] & the pH

- H⁺ ion concentrations are expressed as pH.
- pH = Log [H⁺]
 - If the [H⁺] increase \rightarrow pH will decrease (more acidic)
 - If the [H⁺] decrease \rightarrow pH will increase (more alkaline)
- What is the normal pH of the ECF?

Normally pH= 7.35-7.45

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

pH and H⁺ Concentration of Body Fluids

	[H+] (mEq/L)	рН
Extracellular fluid		
Arterial blood	4.0 X 10 ⁻⁵	7.4
Venous blood	4.5 X 10 ⁻⁵	7.35
IF	4.5 X 10 ⁻⁵	7.35
Intracellular fluid	1 X 10 ⁻³ to 4 X 10 ⁻⁵	6-7.4
Urine	3 X 10 ⁻² to 1 X 10 ⁻⁵	4.5-8
Gastric HCI	160	0.8

Acid Production by the Body

- The body produces large amounts of acids on daily basis as by products of metabolism.
 - Metabolism of dietary proteins.
 - Anaerobic metabolism of carbs and fat.
- Acids in the body are of two kinds:
 - 1. Volatile (CO_2)
 - Non-volatile "fixed" (sulfuric acid, lactic acid) (daily acid load ≈ 50-100 mEq/day) (0.8 mEq/kg/d).

The Body's Defense Against Changes in [H⁺]

Three main systems:

1. Body fluid buffers.

Works within seconds.

2. Lungs

Works within minutes.

3. Kidneys

Works within hours-days.

The most powerful of the three.

BODY FLUID BUFFERS

What is a Buffer?

A buffer = a solution that resists changes in pH upon addition of small amount of acids or bases.

How do Buffers work?

- A buffer is a mixture of a weak acid and a weak base that are in equilibrium.
- To be more accurate, its either made of:
 - A weak acid and its conjugated base (H₂CO₃ & NaHCO₃).
 - A weak base and its conjugated acid ($NH_3 \& NH_4^+$).
- How does a buffer do its job?

How does a buffer do its job?

Bicarbonate buffer solution

The strong acid is converted into a weaker acid

How does a buffer do its job?

Bicarbonate buffer solution

Chemical Buffer Systems in the Body

- There are 3 chemical buffers in the body;
- 1. The Bicarbonate buffer system.
- 2. The phosphate buffer system.
- 3. Proteins.
- They are the 1st line of defence against changes in pH i.e. [H⁺], act within seconds.
- Some are more powerful extracellularly and others are more powerful intracellularly.

- Composed of:
 - A weak acid (H2CO3).
 - Its conjugated base (NaHCO₃).

$$CO_2 + H_2O \xleftarrow{CA}{\longleftarrow} H_2CO_3 \xleftarrow{H^+} HCO_3^-$$

NaHCO₃ \longrightarrow Na+ + HCO₃⁻

1. H_2CO_3 forms in the body by the reaction of $CO_2 \& H_2O$

$$CO_2 + H_2O \xrightarrow{Carbonic anhydrase} H_2CO_3$$

2. H_2CO_3 ionizes weakly to form small amounts of H⁺ & HCO_3^{-1}

$$H_2CO_3 \leftarrow H^+ \& HCO_3^-$$

3. The second component is NaHCO₃ which dissociates to form Na⁺ & HCO₃⁻

NaHCO₃ \longrightarrow Na⁺ & HCO₃⁻

Putting it all together;

This is the main ECF buffer system What happens if you add a base or an acid to the system?

What is the HHE?

• It is an equation that enables the calculation of pH of a solution.

What is it? $pH = pK + \log \frac{HCO3^{-}}{0.03 X PCo_2}$

K = dissociation constant, pK = 6.10.03 = solubility of CO₂

How was it derived?

$H_2CO_3 \longrightarrow H^+ + HCO_3^-$

H₂CO₃ and its dissociated ions are always in equilibrium

 → the products of the reaction on one side of the
 equation are proportional to the product on the other
 side.

$[H_2CO_3] \alpha [H^+] X [HCO_3^-]$

 Since H₂CO₃ is a weak acid, it will not dissociate completely and the concentration of its products will depend on its dissociation constant (K)

$K X [H_2 CO_3] = [H^+] X [HCO_3^-]$

3. Based on the previous equation, [H⁺] can be expressed as follows;

 $[\mathsf{H}^+] = K X \frac{[\mathsf{H}_2\mathsf{CO}_3]}{[\mathsf{H}\mathsf{CO}_3^-]}$

 Because H₂CO₃ can rapidly dissociate into CO₂ and H₂O. And since CO₂ is much easier to measure it can replace H₂CO₃ in the equation;

$$[\mathsf{H}^+] = K X \frac{[\mathsf{Co}_2]}{[\mathsf{HCO}_3^-]} \bigstar$$

It means that;

↑ [CO2] →↑ [H⁺] ↑ [HCO₃⁻] → ↓ [H⁺] This is Henderson's equation (1908)

5. In 1909, Sorensen created the pH scale to express [H⁺]

 $pH = -\log[H^+]$

 In 1916, Hasselbalch decided to merge Henderson's equation with Sorensen's pH scale creating what we now know as the *"Henderson-Hasselbalch equation".*

$$[\mathsf{H}^+] = K X \frac{[\mathsf{Co}_2]}{[\mathsf{HCO}_3^-]} \longrightarrow -\log[\mathsf{H}^+] = -\log\left(K X \frac{[\mathsf{CO}2]}{[\mathsf{HCO}_3^-]}\right)$$

$$-\log[H^+] = -\log K - \log\left(\frac{[CO2]}{[HCO3^-]}\right)$$

$$-\log[H^+] = -\log K - log \left(\frac{[CO2]}{[HCO3^-]}\right)$$

$$pH = pK + \log \frac{[HCO3]}{[Co2]} \quad \longleftarrow \quad This is Henderson-Hasselbach equation (1908)$$

7. Since it is much easier to measure PCO₂ rather than dissolved $[CO_2]$ and because dissolved CO₂ is proportional to PCO₂ multiplied by the solubility of CO₂ (0.03 mmol/mmHg) \rightarrow [CO₂] was replaced by PCO₂ X 0.03

$$pH = pK + \log \frac{[HCO3]}{0.03 \ X \ PCO2}$$

$$CO_2 + H_2O \xleftarrow{CA} H_2CO_3 \xleftarrow{H^+} HCO_3^-$$

$$pH = pK + \log \frac{[HCO3^-]}{0.03 \, X \, PCO2}$$

- What do we understand from this equation?
 - pH α HC03 Regulated by kidneys
 PC02 Regulated by lungs

Each element of the buffer system is regulated

- $\uparrow\uparrow$ HCO₃⁻ will $\uparrow\uparrow$ pH
- ↑↑ PCO2 will ↓↓ pH

Summary of the Bicarbonate Buffer System

Why is it the most important buffer system in the ECF?

Acid-Base Balance

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 24.12

Other Buffering Systems

The phosphate buffer:

- Plays a major role in buffering intracellular & renal tubular fluid.
- Composed of;
 - H₂PO₄⁻ (dihydrogen phosphate)
 - HPO₄-2 (Hydrogen phosphate)

Proteins:

- Contributes to buffering inside cells.
- E.g. Hb.

Summary of Body's Buffering Systems

- Buffer systems do not work independently in body fluids but actually work together.
- A change in the balance in one buffer system, changes the balance of the other systems.
- Buffers do not reverse the pH change, they only limit it.
- Buffers do not correct changes in [H⁺] or [HCO₃⁻], they only limit the effect of change on body pH until their concentration is properly adjusted by either the lungs or the kidney.

RESPIRATORY REGULATION OF ACID-BASE BALANCE

Respiratory Regulation of A/B

- 2nd line of defence against acid-base disturbances in the body.
- HOW?
 - By modulating CO₂ excretion.
- $\uparrow\uparrow$ [H⁺] \rightarrow $\uparrow\uparrow$ ventilation (RR) $\rightarrow\downarrow\downarrow$ PCO₂
- $\downarrow\downarrow$ [H⁺] $\rightarrow \downarrow\downarrow$ ventilation (RR) \rightarrow accumulation of CO₂ $\rightarrow\uparrow\uparrow$ PCO₂.
- Normally, PCO2 = 40 mmHg (35-45 mmHg)

Respiratory Regulation of CO₂

RENAL REGULATION OF ACID-BASE BALANCE

Renal Regulation of A/B Balance

- 3rd line of defence against acid-base disturbances and the most powerful.
- It regulates by excreting either an acidic or basic urine.
- HOW?
- 1. Secreting H⁺
- 2. Reabsorbing HCO_3^-
- 3. Generating "new" bicarbonate ions.

Overview HCO₃⁻ Reabsorption by the Renal Tubules

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

How is HCO₃⁻ Reabsorbed by the tubules?

How Does the Proximal Tubule Reabsorb HCO₃-?

HCO₃⁻ Reabsorption by the PCT

What happens at the DCT & CT?

What happens at the late DCT & CT?

- The filtrate arriving at the DCT & CT is low in HCO_3^- .
- The distal segments of the nephron are characterised by the presence of "intercalated cells" capable of *actively secreting H*⁺ through H⁺-ATPase and H⁺-K⁺ ATPase present on their apical membrane (*Type-A intercalated cells*).
- Only a limited number of H⁺ can be excreted in its free form in urine.
- Lowest possible urine pH=4.5 $\rightarrow \approx 0.04$ mmol/L of free H⁺.
- How does the kidney excrete the extra H⁺?

Non-Bicarbonate Buffers in the Tubular Lumen?

The extra H⁺ secreted will need to be buffered in the tubular lumen

Excretion of H⁺ and Generation of New HCO₃⁻

Excretion of H⁺ as phosphate is capable of handling a limited amount of H⁺ and will not be enough to rid the body of its daily acid load nor if there is unusually high acid production.

The phosphate buffer system

(Vander's Renal Physiology. 8th ed; Guyton & Hall. Textbook of medical physiology. 13th ed.)

(1) CO_2 combines with water within the type A intercalated cell, forming H_2CO_3 .

2 H_2CO_3 is quickly split, forming H⁺ and bicarbonate ion (HCO₃⁻).

3b For each H⁺ secreted, a HCO₃⁻ enters the peritubular capillary blood via an antiport carrier in a HCO₃⁻-Cl⁻ exchange process.

4 Secreted H⁺ combines with HPO_4^{2-} in the tubular filtrate, forming H₂PO₄⁻. **5** The H₂PO₄⁻ is excreted in the urine.

Primary active transport
 Secondary active transport
 Simple diffusion

Facilitated diffusion

- Transport protein
 - Ion channel
- CA Carbonic anhydrase

Excretion of H⁺ and Generation of New HCO₃⁻ The Ammonia Buffer System

- Renal tubular cells, especially PCT, are capable of generating ammonium (NH₄⁺) "*ammoniagenesis*" which is then excreted in urine carrying with it H^{+.}
- The rate of ammoniagenesis can be modified according to the needs of the body.
- Quantitatively, the ammonia buffer system is more important than the phosphate buffer system for H⁺ excretion in urine.
- It is the most important system in case of acidosis.

The Ammonia Buffer System

The Overall Scheme of Renal Excretion of Acids & Bases

To excrete acid:

- 1. Freely filter HCO_3^-
- 2. Reabsorb the majority of filtered HCO_3^-
- 3. Reabsorb some additional HCO_3^{-1}
- Secrete H⁺ (titrate filtered bases, i.e. HPO₄⁻²) and secrete NH₄⁺
- 5. Excrete acidic urine containing NH₄+

To excrete base:

- 1. Freely filter HCO_3^-
- 2. Reabsorb the majority of filtered HCO₃-
- 3. Reabsorb some additional HCO₃⁻
- 4. Secrete some HCO₃⁻
- 5. Excrete alkaline urine containing HCO₃⁻

(Adapted with modification from Vander's Renal Physiology. 8th ed)

Factors Affecting H⁺ Secretion and HCO₃⁻ Reabsorption

Table 30-2

Factors That Increase or Decrease H⁺ Secretion and HCO₃⁻ Reabsorption by the Renal Tubules

Increase H⁺ Secretion and HCO₃⁻ Reabsorption

- ↑ PCO₂
- $\uparrow H^+, \downarrow HCO_3^-$
- ↓ Extracellular fluid volume
- ↑ Angiotensin II
- ↑ Aldosterone

Hypokalemia

Decrease H⁺ Secretion and HCO₃⁻ Reabsorption

- $\downarrow PCO_2$
- \downarrow H⁺, \uparrow HCO₃⁻
- ↑ Extracellular fluid volume
- ↓ Angiotensin II
- ↓ Aldosterone
- Hyperkalemia

THANK YOU