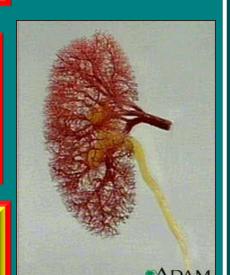


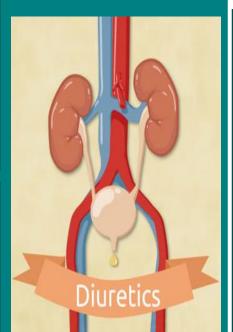
DIURETICS



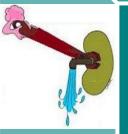
ILOS

Identify the site of action of each class of diuretics in the nephron

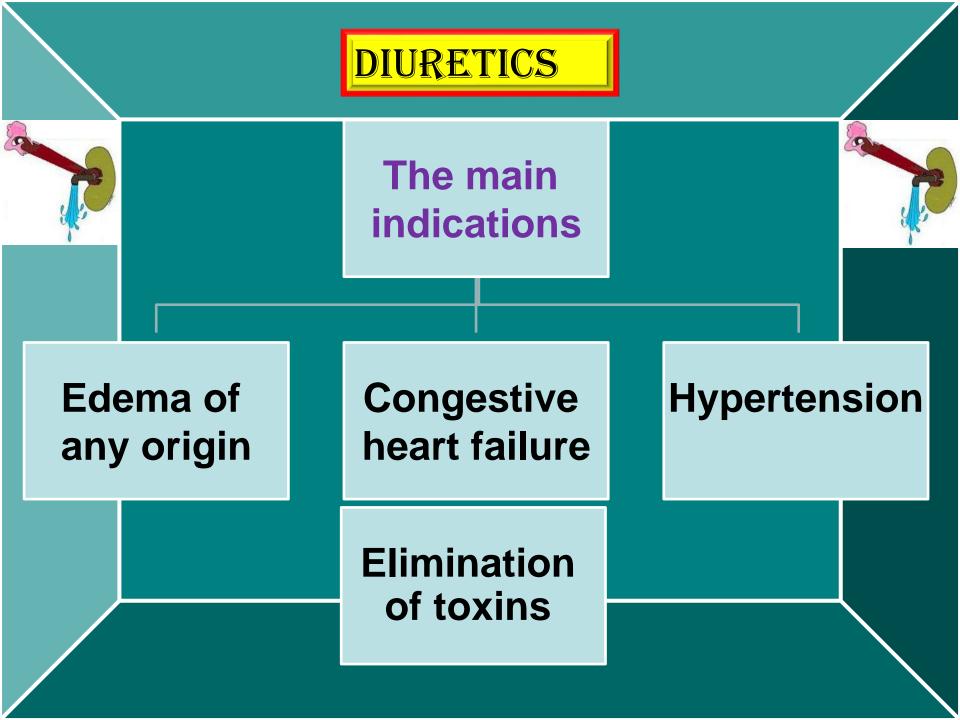
Describe the mechanisms of action of diuretics

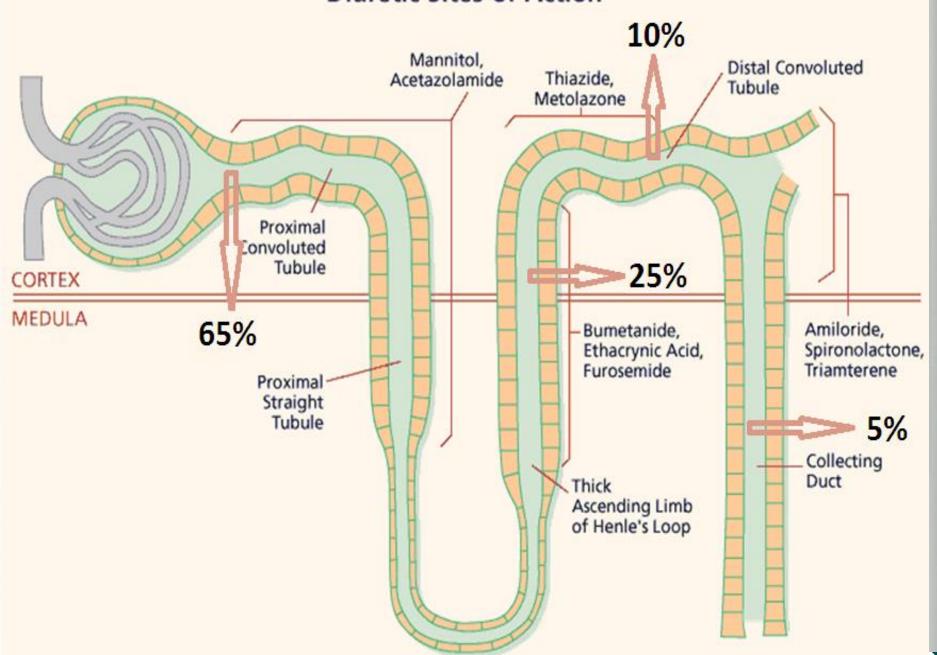

DIURETICS

ILOS

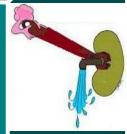

Detail on the pharmacodynamic actions and pharmacokinetic aspects of diuretics

List ADRS, therapeutic uses, contraindications and drug-drug interactions of diuretics

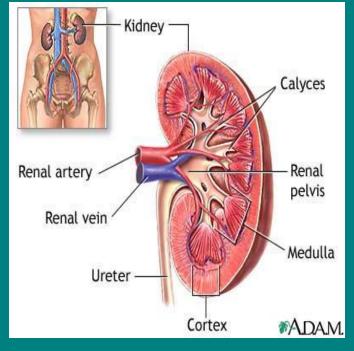

DIURETICS

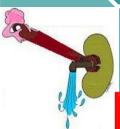

Water diuresis

Is water a clinicallyuseful diuretic?



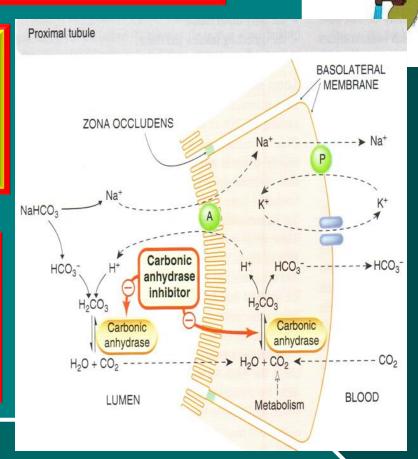
Diuretic Sites of Action

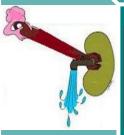

DIURETICS I



CARBONIC ANHYDRASE INHIBITORS

OSMOTIC DIURETICS

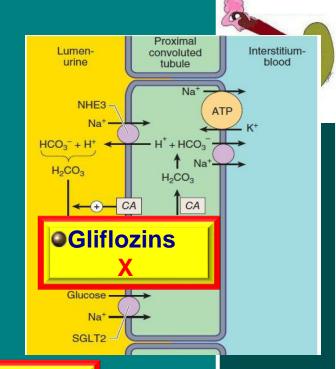

DIURETICS I

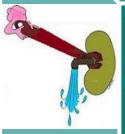


CARBONIC ANHYDRASE INHIBITORS

Carbonic anhydrase
 accelerates the attainment
 of equilibrium in the reaction
 CO2 + H2O↔H2CO3

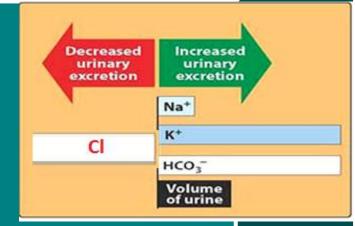
Acetazolamide is a potent specific inhibitor of carbonic anhydrase, enzyme inhibition is non competitive




Olt ↓ reabsorption of bicarbonate in the proximal tubule & prevent the acidification of urine in the distal tubule

OPromotes K+ excretion by ↑the load of Na+ delivered to the distal tubules

•With repeated dosage the diuretic action is lost →loss of HCO3⁻ & development of acidosis


Self- limiting action of acetazolamide restrict its use to mild oedema.

PHARMACOKINETICS

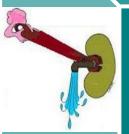
ACETAZOLAMIDE


Given orally once a day

Onset of action is rapid (30 min)

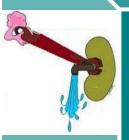
t½ 6-9h

Excreted by active secretion in proximal convoluted tubules


DORZOL&MIDE

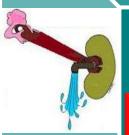
Used topically for treatment of increased intraocular pressure in open-angle glaucoma

No diuretic or systemic side effects (Why?).


ADRS

Drowsiness

Numbness


Tingling sensation of the face & extremities

- **Disturbance of vision**
- **Contraindicated in patients with liver**cirrhosis (alkaline urine ↓excretion of NH₄→
 hyperammonemia & hepatic encephalopathy)

CLINICAL INDICATIONS

- 1-Glaucoma:- aqueous humor contains a high concentration of bicarbonates. ↓of carbonic anhydrase ↓ rate of aqueous humor formation→ ↓intraocular pressure (tolerance does not develop to this effect)
- **2-Urine alkalinization**:- uric acid, cysteine & methotrexate are relatively insoluble in acid urine. Renal excretion can be \(\frac{1}{2}\) by \(\frac{1}{2}\) urinary bicarbonate excretion. Effect is short lived & require bicarbonate infusion.

CLINICAL INDICATIONS

3-↓Formation of CSF:- ↓of carbonic anhydrase in the chorioid plexus

→↓formation of CSF. Useful in management of benign intracranial hypertension.

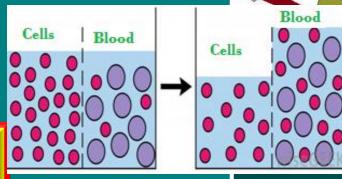
4-Useful for correcting a metabolic alkalosis, especially an alkalosis caused by diuretic-induced increases in H⁺ excretion & metabolic alkalosis of heart failure.

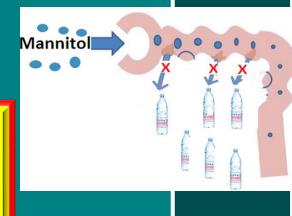
CLINICAL INDICATIONS

↓5-Mountain sickness prophylaxis:given nightly 5 days before the ascent
↓ weakness, breathlessness, dizziness,
nausea, cerebral & pulmonary oedema

↓6-Adjunct for treatment of epilepsy:- glial cells contain carbonic anhydrase. Nerves are highly responsive to rise in pH. ↑7.4→ 7.8 causes convulsions. ↓of neuronal carbonic anhydrase →↓ pH in the vicinity of neurons→↓ convulsions.

OSMOTIC DIURETICS (AQUARETICS)

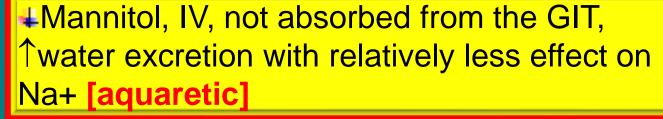



In systemic circulation: Mannitol draws water out of cells into the bloodstream

Expands the extracellular fluid volume, decreases blood viscosity, and inhibits renin release, renal blood flow

In the kidney tubules: IV administration of any solute filtered by glomeruli may produce osmotic diuresis when the amount delivered to tubules exceeds their absorptive capacity

The dissolved compound exert an osmotic pressure →↓water & Na+ reabsorption



MANNITOL

PHARMACOKINETICS

If given orally osmotic diarrhea

■ The property of the pro

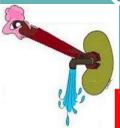
Little metabolized

Mainly excreted unchanged in urine

Excreted by glomerular filteration

↓t½0.25-1.7h, prolonged in renal failure to 36h

M&NNITOL


CLINICAL USES

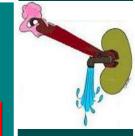
1-To eliminate drugs that are reabsorbed from the renal tubules in acute poisoning e.g. salicylates, bromides, barbiturates

2-To prevent acute renal necrosis after severe injury, haemorrhage, hypovolaemia, →↓ GFR, absorption of water & salts is complete, distal part dries up→ irreversible damage

MANNITOL

CLINICAL USES

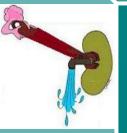
3-To↓ intracranial & intraocular pressure before ophthalmic or brain procedures



4-To maintain urine volume & to prevent anuria resulting from large pigmentation load to the kidney e.g. hemolysis, rhabdomyolysis

MANITOL

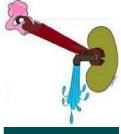
ADRS



- ↓Headache, nausea, vomiting→ hyponatremia
- ↓Extracellular volume expansion, complicates heart failure & pulmonary oedema
- ↓Excessive use → dehydration
 & hypernatraemia, (Adequate
 water replacement is required).

"How could I be retaining water? — I only drink beer."

MANNITOL



CONTRAINDICATIONS

Chronic heart failure

Anuric patients or patients not responding to a test dose of mannitol

