

Renal Physiology

Renal regulation of body fluids

Renal Physiology

Regulation of Sodium excretion

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tubular Reabsorption and Secretion

Regulation of Na⁺ Excretion.

- Na⁺ is the main extra cellular cation.
- The amount excreted is adjusted to equal amount ingested.
- **Urinary Na⁺ output ranges between**
 - 1-400 mEq/d depending on intake.
- Na⁺ excretion is affected by:
- Amount filtered.
- Amount reabsorbed.
- So, factors influencing GFR and tubular reabsorption will affect renal Na⁺ excretion.

1- Hormonal control of Sodium reabsorption.

- a) Mineralocorticoids (Aldosterone).
- \U00e7 Na⁺ reabsorption in exchange with K⁺ or H⁺

 excretion at the P cells of DCT & CD.
- Mechanism:
- ↑ Number of Na⁺ channels at the apical membrane of P cells.
- Stimulate Na⁺-K⁺ pump at basolateral membrane.

Mechanism of Action of Aldosterone.

b) Glucocorticoids

Have weak mineralocorticoid activity.

c) Angiotensin II

- Most powerful Na⁺ retaining hormone.
- Mechanism:
 - **1-**[↑] Aldosterone secretion.
 - **2- Direct action on PCT through:**
- Stimulation of Na⁺-K⁺ ATPase.
- Stimulation of Na⁺- H⁺ counter transport.

d) Sex hormones

e) ANP

 [↑]Na⁺& H₂O excretion under conditions of marked expansion of ECF.

 β 1 adreno-receptors).

Angiotensinogen

↓ Renin ← JGA+
Angiotensin I

Juxta Glomerular Apparatus of Kidney

↓ ACE
Angiotensin II

Angiotensin converting enzyme

Systemic Regulation by Hormones

Renin-Angiotensin System (RAS)

Actions of angiotensin II via AT₁

- 1. Vasoconstriction
- 2. Aldosterone secretion from adrenal cortex.
- 3. reabsorption of Na⁺ by distal renal tubules.

Long Term Regulation of Arterial Pressure Renal-Body Fluids Mechanism

ADH hormone (Vasopressin)

H₂O permeability

H₂O permeability in distal tubule is variable, which means that sometimes it is high and sometimes it is low.

Examples:

 H₂O diuresis with increased H₂O intake – this causes distal tubule to decrease permeability and produce dilute urine
 Dehydration causes increased H₂O reabsorption resulting in concentrated urine (max of 1200 mOsm)

The permeability of the distal tubule to H₂O is regulated by "antidiuretic hormone" (ADH) or Vasopressin.

Control of Water Intake

- Drinking is largely by habit! That is, we drink enough which, under normal conditions, does not make us thirsty. Thirst is an emergency mechanism when there is a lack of water.
- Stimuli for thirst is similar to osmoreceptors which produce and release ADH.
- Major mechanism for causing sensation of thirst is an 'intracellular dehydration' – mainly due to Osmolality of extracellular fluid

Long Term Regulation of Arterial Pressure Renal-Body Fluids Mechanism

Atrial natriuretic peptides secretion

- Mechanism of action of ANP:
- ↓ Renin secretion.
- ↓ Na⁺ reabsorption at CD directly by:
- Inhibition of Na⁺ channels at apical membrane.
- Inhibition of Na⁺-K⁺ ATPase at basolateral membrane.

Actions of the Natriuretic Peptides (NP)

f) $PGE_2 \uparrow Na^+$ excretion through:

- Inhibit apical Na⁺ channels.
- Inhibit Na+-K+ ATPase.
 - (Action similar to ANP and opposite to aldosterone).

