بسم الله الرحمن الرحيم





#### Dr. Abeer Al-Ghumlas

# Haemostasis

#### <u>At the end of this lecture student should</u> <u>be able to:</u>

- 1. Recognize different stages of hemostasis
- 2. Describe formation and development of platelet
- 3. Describe the role of platelets in hemostasis.
- 4. Recognize different clotting factors
- 5. Describe the cascade of clotting .

# Haemostasis

- 5. Describe the cascade of intrinsic pathway.
- 6. Describe the cascade of extrinsic and common pathways.
- 7. Recognize the role of thrombin in coagulation
- 8. Recognize process of fibrinolysis and function of plasmin

# Hemostatic Mechanisms:

## Mechanisms:

- Vessel wall
- Platelet
- Blood coagulation
- Fibrinolytic system

## **Clotting Factors**

| Factors | Names                            | <br>    | -Plasma                                                 |
|---------|----------------------------------|---------|---------------------------------------------------------|
| I       | Fibrinogen                       |         | <ul> <li>White blood cell</li> <li>Platelets</li> </ul> |
| II      | Prothrombin                      |         | -Red blood cells                                        |
| III     | Thromboplastin                   | U       |                                                         |
| IV      | Calcium                          |         |                                                         |
| V       | Labile factor                    | Circula | ate                                                     |
| VII     | Stable factor                    | in plas | ma<br>tive                                              |
| VIII    | Antihemophilic factor A          | sate    |                                                         |
| IX      | Antihemophilic factor B          |         |                                                         |
| ×       | Stuart-Power factor              |         |                                                         |
| XI      | Plasma thromboplastin antecedent |         |                                                         |
|         | (PTA)                            |         |                                                         |
| XII     | Hagman factor                    |         |                                                         |
| XIII    | Fibrin stablizing factors        |         |                                                         |



#### The Intrinsic Pathway











# Thrombin

- Thrombin changes fibrinogen to fibrin
- Activates factor V and factor XIII
- Thrombin is essential in platelet morphological changes to form primary plug
- Thrombin stimulates platelets to release ADP & thromboxane A2; both stimulate further platelets aggregation

#### **Critical Role of Thrombin**

Thrombin is the link between vascular injury, coagulation, and platelet activation



Coughlin SR. Nature. 2000;407:258-64; Monroe DM et al. ATVB 2002;22:1381-9.



(clot formation)

- A series of biochemical reactions leading to the formation of a blood clot
- This reaction leads to the activation of <u>thrombin</u> <u>enzyme</u> from inactive form prothrombin
- Thrombin will change fibrinogen (plasma protein) to fibrin (insoluble protein)
- Prothrombin (inactive thrombin) is activated by a long intrinsic or short extrinsic pathways

#### **Intrinsic Pathway**

- The trigger is the activation of factor XII by contact with foreign surface, injured blood vessel, and glass.
- Activate factor (XIIa) will activate XI
- Xla will activate IX
- IXa + VIII + platelet phospholipid + Ca activate X
- Following this step the pathway is common for both

## **Extrinsic** pathway

- Triggered by material released from damaged tissues (tissue thromboplastin)
- tissue thromboplastin + VII + Ca  $\rightarrow$  activate X

## Common pathway

- Xa + V +PF3 + Ca ( prothrombin activator) it is a proteolytic enzyme activate prothrombin  $\rightarrow$  thrombin
- Thrombin act on fibrinogen  $\rightarrow$  insoluble thread like fibrin
- Factor XIII + Ca  $\rightarrow$  strong fibrin (strong clot)

#### **Activation of Blood Coagulation**

- Intrinsic Pathway: all clotting factors present in the blood
- Extrinsic Pathway: triggered by tissue factor

**Common Pathway** 



**P**<sup>\*</sup> = phospholipid from platelets

#### The Intrinsic Pathway



#### **REGULATION OF COAGULATION**

Antithrombin:

inhibits thrombin and other enzymes

Protein C:

degrades activated factors V and VIII

Protein S:

cofactor for protein C

 <u>Tissue factor pathway inhibitor (TFPI)</u>: Inhibits the extrinsic system by inhibiting Factor VIIa

Deficiency of any of these proteins can increase risk of thrombosis

## <u>Haemostasis</u>





## Hemostasis:

the spontaneous arrest of bleeding from ruptured blood vessels

## Mechanisms:

Vessel wall
 Platelet
 Blood coagulation
 Fibrinolytic system (Fibrinolysis)

# Fibrinolysis

- Formed blood clot can either become fibrous or dissolve
- Fibrinolysis (dissolving) = Break down of fibrin by naturally occurring enzyme plasmin therefore prevent intravascular blocking



**FDP\*:** Fibrin Degradation Products

## Fibrinolysis



- Plasmin is present in the blood in inactive form plasminogen
- Plasmin is activated by tissue plasminogen activators (t-PA) in blood.
- Plasmin digest intra & extra vascular deposit of Fibrin  $\rightarrow$  fibrin degradation products (FDP)
- 25 · Unwanted effect of plasmin is the digestion of clotting factors



- Plasmin is controlled by:
  - Plasminogen Activator Inhibitor (PAI)
  - Antiplasmin from the liver
- Uses:
  - Tissue Plasminogen Activator (t-PA) used to activate plasminogen to dissolve coronary clots

## Haemostatic Mechanisms:

- Vessel wall
- Platelet
- Blood coagulation
- Fibrinolytic system

#### **Bleeding disorders**



**Bleeding Disorder** 

1) Bleeding starts



2) Vessels constrict



 Incomplete platelet plug, continued bleeding



• • •

 Incomplete and/or delayed formation of fibrin clot, continued bleeding



- Bleeding can result from:
  - <u>Platelet defects</u>: deficiency in number (thrombocytopenia) or defect in function.

 <u>Coagulation factors</u> <u>defect:</u>
 Deficiency in coagulation factors (e.g. hemophilia).

- Vitamin K deficiency.

#### The Intrinsic Pathway



#### **Bleeding disorders**

- <u>Hemophilia</u>:
  - $-\uparrow$  bleeding tendency.
  - X-linked disease.
  - Affects males.
  - 85% due to FVIII deficiency (hemophilia A), and 15% due to FIX deficiency (hemophilia B).
- Vitamin K deficiency & liver disease:
  - Almost all coagulation factors are synthesized in the liver.
  - Prothrombin, FVII, FIX, & FX require vitamin K for their synthesis.



There is balance between clotting and fibrinolysis Excess clotting  $\rightarrow$  blocking of Blood Vessels Excess fibrinolysis  $\rightarrow$  tendency for bleeding



#### Haemostatic Mechanisms



38 giardino privato a cittã della pieve

# THANK YOU