

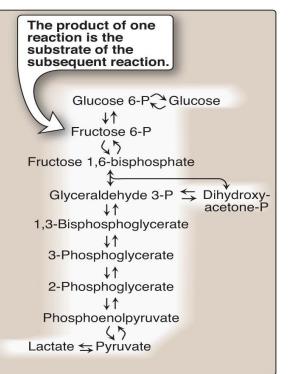
Glycolysis

Lecture

Color Index

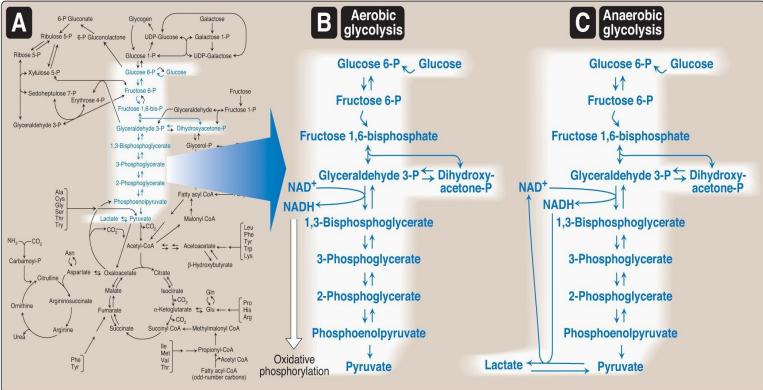
- Girls' slides
- Boys' slides
- Doctors' notes
- Important
- Extra info

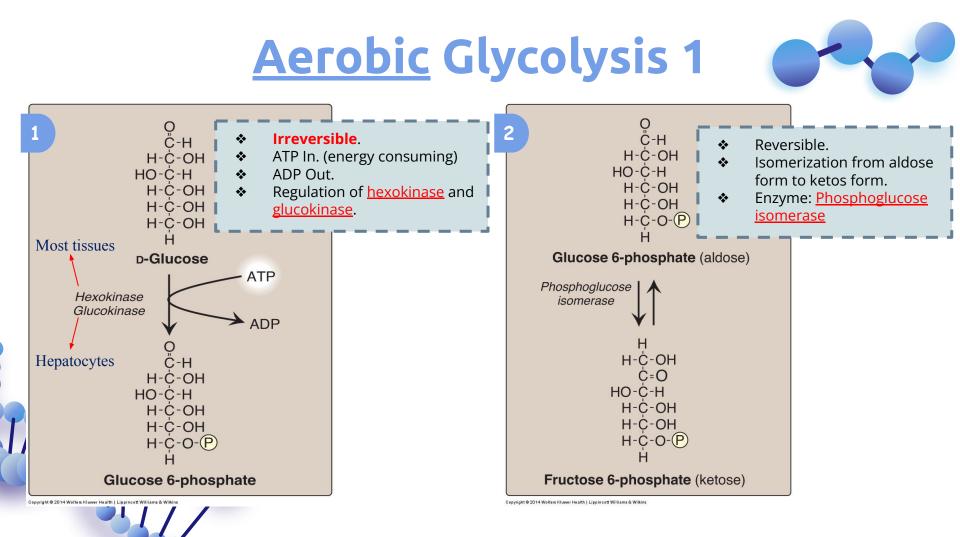
Objectives


By the end of this lecture, students are expected to:

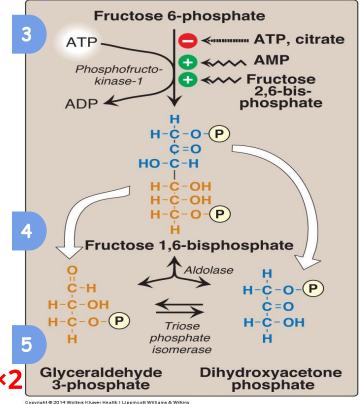
- Recognize glycolysis as the major oxidative pathway of glucose.
- List the main reactions of glycolytic pathway.
- Discuss the rate-limiting enzymes/Regulation.
- Assess the ATP production (aerobic/anaerobic).
- Define pyruvate kinase deficiency hemolytic anemia.
- Discuss the unique nature of glycolysis in RBCs.

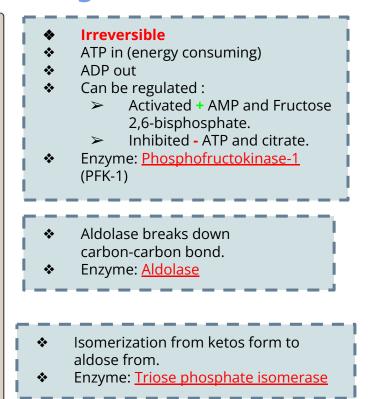
Glycolysis


- **Glycolysis**: the major pathway for glucose oxidation, occurs in the <u>cytosol</u> of all cells.
- It is unique, in that it can function either aerobically or anaerobically, depending on the availability of oxygen and intact mitochondria.
- It allows tissues to survive in presence or absence of oxygen, e.g., skeletal muscle.
- RBCs, which lack <u>mitochondria</u>, are completely reliant on glucose as their metabolic fuel, and metabolizes it by anaerobic glycolysis.

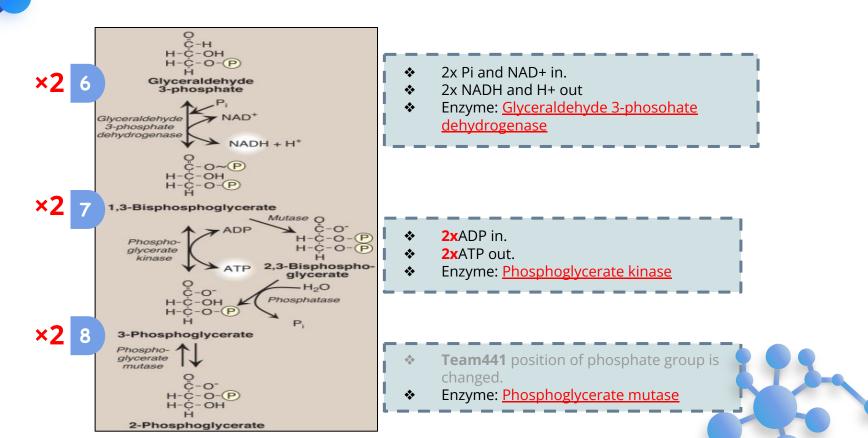

Copyright © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkin

Aerobic Vs. Anaerobic Glycolysis

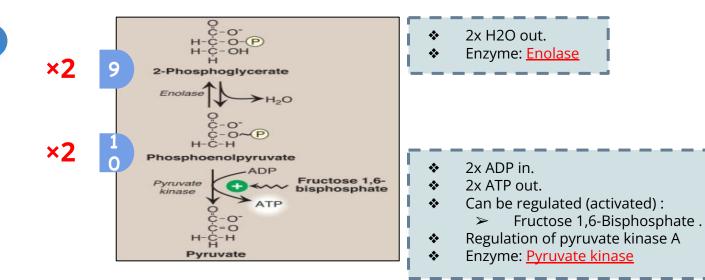

overview



Copyright © 2014 Wolters Kluwer Health | Lippincott Williams & Wikins



Aerobic Glycolysis 2

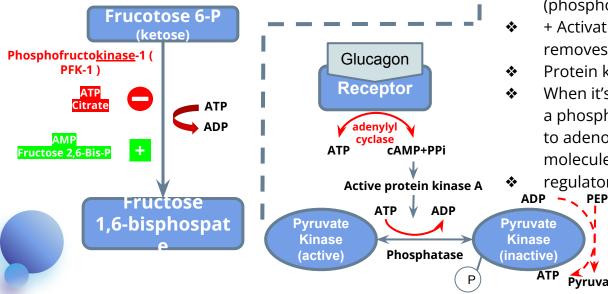


<u>Aerobic</u> Glycolysis 3

Aerobic Glycolysis 4

Regulation of enzymes: Glucokinase/Hexokinase

Regulation of: hexo<u>kinase</u> (in most cells) and gluco<u>kinase</u> (in liver or we can say hepatocyte).


- Hexokinase: it is inhibited by the reaction product, glucose-6-P (1st reaction) which accumulates when further metabolism of this hexose is reduced.
- Glucokinase (GK): It is inhibited indirectly by Fructose-6-P (2nd reaction) and is indirectly stimulated by glucose.
 - In the presence of high fructose-6-phosphate, Glucokinase (GK) translocates and binds tightly to GKRP (glucokinase regulatory protein) in the <u>nucleus</u>, making it inactive (by translocation into the nucleus).
 - When glucose levels are high in blood and hepatocytes (GLUT-2), GK is released from GKRP and enters the cytosol.
 Glucose

<u>cytosoi</u> .			Glucose
	Hexo <u>kinase</u>	Gluco <u>kinase</u>	
Site	All tissues	hepatocytes	G6P NUCLEUS
Inhibited by	glucose-6-Phosphate	Fructose-6-Phosphate (indirectly)	F6P Glucokinase
Stimulated by	-	Glucose	Y Gluco- regulatory Pyruvate kinase (GK) protein (inactive) (GKRP)

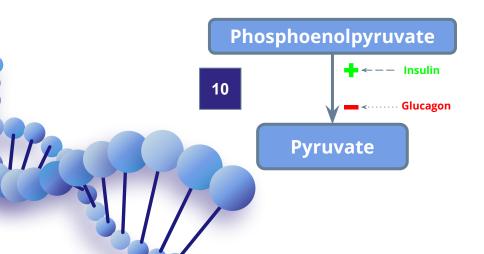
Regulation of enzymes: PFK-1 & Pyruvate Kinase

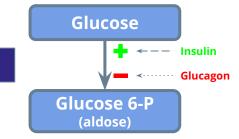
Phosphofructokinase-1 (PFK-1) enzyme:

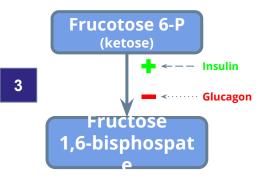
- Rate limiting enzyme
- * Reaction number 3 in glycolysis, is Irreversible reaction
- Can regulate glycolysis through allosteric regulation. *
- + Activated by AMP and Fructose 2,6-bisphosphate. *
- Inhibited by ATP and citrate. *
- regulatory mechanism : rabid , short term.

Pyruvate Kinase covalent modification

- Reaction number 10 in glycolysis, Irreversible ** reaction.
- Once glucagon (hormone) bind to the receptor it will * activate the adenylyl cyclase that will produce cAMP which will activate protein kinase A. This protein will inhibit pyruvate kinase by adding P group to it (phosphorylation).
- + Activation of enzyme can be done by phosphatase (removes a phosphate group)
- Protein kinase A is cAMP dependent


Pvruvate


- When it's in the active form It catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), yielding one molecule of pyruvate and one molecule of ATP.
 - regulatory mechanism : rabid , short term


Long-Term Regulation of Glycosis

Long term regulation of glycolysis in reactions

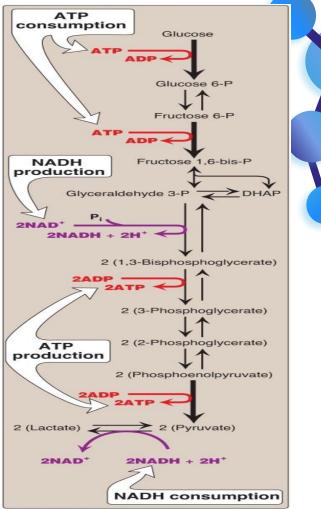
1, 3 and 10: (irreversible, Rate limiting enzymes). Insulin: Induction (increase the transcarbtion). **Glucagon:** Repression (decrease the transcarbtion).

[Regulation of glycolysis]

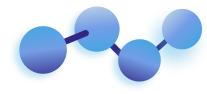
Regulatory enzymes [irreversible reactions]

1-Glucokinase [in the liver] / hexokinase [other tissue] 2- PFK-1 [phosphofrctukinase 3- Pyruvate kinase

Regulartory Mechanism


- Rapid, short-term: Allosteric, Covalent modifications
- Slow, long-term: Induction/repression

For each NADH , 3 ATP will be produced by ETC in the mitochondria


Copyright @ 2014 Walters Klower Health | Lipplycett Williams & Wildow

Substrate-level phosphorylation vs. Oxidative phosphorylation

- Phosphorylation is the metabolic reaction of introducing a phosphate group into an organic molecule.
- Oxidative phosphorylation: The formation of high-energy phosphate bonds by phosphorylation of ADP to ATP <u>coupled to</u> the transfer of electrons from reduced coenzymes to molecular oxygen via the electron transport chain (ETC); it occurs in the mitochondria.
- Substrate-level phosphorylation: The formation of high-energy phosphate bonds by phosphorylation of ADP to ATP (or GDP to GTP) <u>coupled to</u> cleavage of a high-energy metabolic intermediate (substrate). It may occur in cytosol or mitochondria

Aerobic Glycolysis (Net ATP produced)

ATP Consumed:

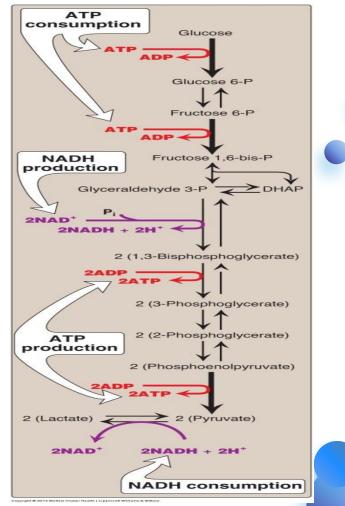
2 ATP

ATP Produced:

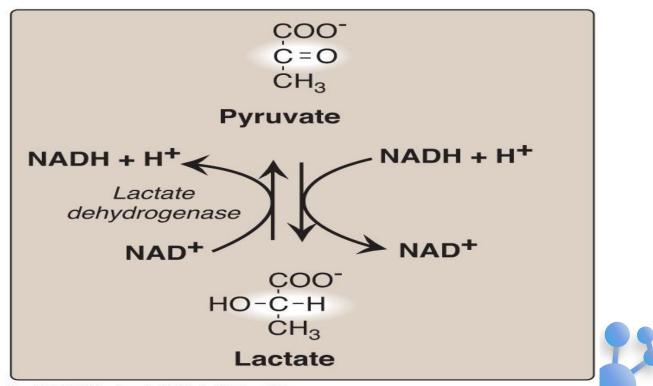
Net:

Substrate-level2 X 2 = 4ATPOxidative-level2 X 3 = 6ATPTotal10ATP

10 – 2 = 8 ATP


Anaerobic glycolysis

•NADH produced cannot be used by ETC for ATP production. (No O₂ and/or No mitochondria)


•Less ATP production, as compared to aerobic glycolysis.

•Lactate is an obligatory end product, **Why?**

Because if not formed, All cellular NAD⁺ will be converted to NADH, with no means to replenish the cellular NAD \square Glycolysis stops \square death of the cell

Lactate Dehydrogenase

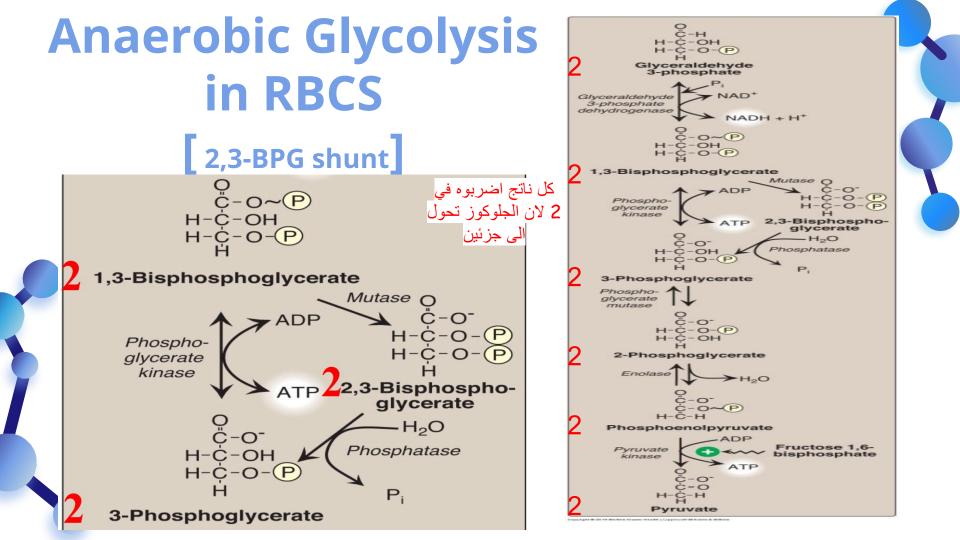
Copyright @ 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins

Anaerobic Glycolysis net ATP produced

ATP Consumed:

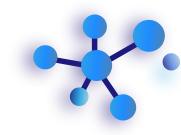
2 ATP

ATP Produced:


Substrate-level2 X 2 = 4ATPOxidative-level2 X 3 = 6ATPTotal4ATP

Net:

4 - 2 = 2 ATP



Glycolysis in RBCs { Net ATP produced }

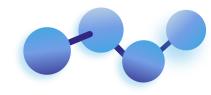
ATP Consumed:

2 ATP

ATP Produced:

Substrate-level

2 X 2 = 4 ATP or 1 X 2 = 2


Oxidative-level 2 X 3 = 6 ATP Total 4 or 2 ATP

Net:

$$4 - 2 = 2$$
 ATP
 $2 - 2 = 0$ ATP

Glycolysis in RBCs {summary}

End product:

Lactate No net production or consumption of NADH

Energy yield:If no 2,3-BPG is formed:2 ATPIf 2,3-BPG shunt occurs:0 ATP

PK Deficiency hemolytic anemia depends on:

Degree of PK Deficiency Compensation by 2,3-BPG

Take Home Message Glycolysis is the major oxidative pathway

- Glycolysis is the major oxidative pathway for glucose
 Net energy produced in:
- Glycolysis is employed by all tissues
- Glycolysis is a tightly-regulated pathway
- PFK-1 is the rate-limiting regulatory enzyme

Net energy produced in glycolysis in RBCs:

Aerobic glycolysis:8 ATP

Anaerobic glycolysis 2 ATP

- Glycolysis is mainly a catabolic pathway foWithout 2,3 BPG synthesis: 2 ATP ATP production, But it has some anabolic With 2,3 BPG synthesis: 0 ATP features (amphibolic)
- Pyruvate kinase deficiency in RBCs results in hemolytic anemia

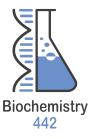
What is the net energy produced in the Aerobic glycolysis ?					
A- 8 ATP	B- 12ATP	C- 4ATP	D- 2ATP		
Any of these er	nzymes converts Fru pho	ictose6_phosphate osphate	into Fructose 1,6bis		
A-enoloose	B- lactase	C-phospho fructoKinase	D-glucase		
Glucokinase work in					
A-liver cell	B-muccel cells	C-WBC	D-blood cells		
Any of these are in irreversible reactions?					
A-APFK-3	B-PFK-1	C-PkF-1	D-PPP		
In this reaction (glucose into glucose 6-phospat) what is happen with ATP?					
ATP TO AMP	B-NADH TO NAD+	C-AMP TO ADP	D-ATP TO ADP		

Q1:what are PFK-1 inhabitors and activator?

Q2:what is the enzyme's name involves in glycolysis and has an important role in hemolytic anemia? And what are the types of its mutations?

ANSWERS:

1-The activators are AMP and Frucose 2,6-bisphosphat and the inhabitors are ATP and citrate.


2-Pyruvate kinase,

-Partial deficiency {Altered enzyme kinetic. mutation in allosteric binding site} -complete deficiency {Altered response to activator. mutation in active site} -Decrease amount of the enzyme or its stability

Meshari Alshathri Talal Alharbi Azzam Alotaibi Basel Al-Zahrani Saleh Aldeligan Mohammed AlGhamdi Abdulaziz Lafy Rayan Alahmari Mohammed Alrobeia Ajwan Aljohani Mashael Alasmri Razan Almanjomi Razan Almohanna Mashael Alsuliman Reema Alhussien Moudi Alsubaie Renad Alayidh

Leaders

Sara Alsheikh & Mohammed Alshehri

Our

Team

