

Lecture 5

Color Index

- Girls' slides
- Boys' slides
- Doctors' notes
- Important
- Extra info

Molecular Biology (2)

- Understand DNA replication.
- Know the transcription of genetic material into mRNA.
- Get an idea about the translation of mRNA into functional protein.

DNA is the genetic material, therefore it must:

- Replicate faithfully (من غير أخطاء)
- Have the coding ability to produce proteins for all cellular functions.

Features of Eukaryotic DNA Replication

Semiconservative with respect to parental strand:

Daughter DNA molecules contain one parental strand (old) and one newly-replicated strand.

Bidirectional with multiple origins of replication.

Bidirectional: it goes both ways. Origins of replication: specific sequence 5' where the parent DNA strands separate. ^{3'}

Semiconservative

Features of Eukaryotic DNA Replication

In DNA replication, both daughter strands (leading strand red, lagging strand blue) are synthesized in their $5' \rightarrow 3'$ directions Leading strand: a new strand that is synthesized continuously Lagging strand: a new strand that is synthesized in fragments (Okazaki-fragments)

	Proteins Involved in DNA Replication					
Protein name	Function	باختصار				
DNA Helicase	Unwinds (melts) the DNA at the site of origin by breaking the hydrogen bond between the bases	يفصل ال DNA				
Single-Stranded DNA Binding Proteins	Prevent rewinding of the single DNA strands (prevent hydrogen bond formation)	یمنع انه یرجع دبل ستر اندز				
(DNA) Primase	Make short segments of RNA primer complementary to DNA	يسوي RNA البادئة				
DNA Polymerases (5 types: α; β; γ; δ; ε)	(each with different job but we are not going that deep) Add nucleotides to RNA primer. Proofreads bases added and replaces incorrect nucleotides. (Removes RNA primers/fill the gaps/spell check)	يبني ويتأكد من بنائه				
DNA Ligase	Join the segments that DNA polymerase made instead of RNA nucleotides by form bonds between sugar-phosphate backbone	انزیم یربط بین ال Lagging strands				
Topoisomerases: Topoisomerase I Topoisomerase II	prevent supercoiling of the chromosome	يمنع الالتفاف الفائق				
Telomerases	prevent the shorting of the chromosome (maintain the chromosome length).	يمنع تقصير الكروموسومات				

NOTE: it's important to

memorize the protein name and function specially the first 5 <u>Helpful</u> <u>Video</u> :)

Helicase protein (pink) binds to DNA sequences called origins and unwinds DNA strands.
opens the DNA strands and forms replication fork

Single-stranded DNA binding proteins (purple balls) prevent single strands from rewinding.

DNA Primase protein (red) makes a short segment of RNA primer complementary to the DNA

- always the synthesis direction $5' \rightarrow 3'$
- made by DNA polymerase.

Steps in DNA Replication

DNA polymerases (purple):

• Adds (complimentary) DNA nucleotides to the RNA primer. Leading strand is (5'+3') toward the fork, while the lagging strand is (5'+3') in the opposite direction of the fork.

• **Proofreads** bases added and replaces incorrect nucleotides. If a wrong nucleotide is added that is not complementary to the parent strand, DNA polymerase will **recognize it** and **replace it**. Reading is always in the 3'→5' direction, while synthesis is always in the 5'→3' direction.

Okazaki fragment

- Leading strand synthesis **continues** in a 5' to 3' direction.
- Discontinuous synthesis (of the lagging strand) produces 5' to 3' DNA segments (Okazaki fragments).

Steps in DNA Replication

Exonuclease activity of **DNA polymerase (Yellow) removes RNA primers. Exonucleases** are enzymes that remove nucleotides.

DNA polymerases fill the gaps.

5

6

Ligase (Green) forms bonds between the sugar-phosphate backbone (phosphodiester bond). The DNA consists of sugar-phosphate chains on the <u>sides</u> and nitrogenous bases in the <u>center</u>.

The Central Dogma of Molecular Biology

- A portion of DNA, called a **gene**, is transcribed into RNA.
- RNA is translated into proteins.
- Only 5% of DNA wil transcribed into mRNA.
- DNA comes from DNA

- A portion of **DNA** (a **gene**) is transcribed into messenger RNA (mRNA).
- Only one of the DNA strands is transcribed (antisense strand).
- The **RNA polymerase II** is responsible for this process.
- The direction of transcription is **5'--->3'**.

The **antisense strand** contains the **opposite codon** of the required **mRNA** to be transcribed.

mRNA is the sense strand

Transcription "mRNA Synthesis"

Steps of mRNA synthesis

<u>Chain initiation</u>: **RNA polymerase II** binds to **promoter region** of DNA to start transcription.

<u>Chain elongation</u>: a portion of DNA template unwinds (DNA melting) at the point of RNA synthesis. This forms a short length of RNA-DNA hybrid.

<u>*Chain termination*</u>: DNA contains specific sites which stop transcription (at the sequence of 4-10 AT base pairs).

Translation "Protein Synthesis"

A process of **protein synthesis from mRNA**

- mRNA has genetic codes for **amino acids** present in **proteins.**
- The genetic code is a dictionary that identifies the correspondence between a sequence of nucleotide bases and a sequence of amino acids. It is a code that connects the nucleotide bases in mRNA and the amino acids"team441".
- Each individual word in the code is composed of **three** nucleotide bases (**codons**). Each codon specifies a particular amino acid **"team441"**.
- 64 possible codons:
 - **61** codons specify **20** amino acids (one amino acid can have many codons that represent it)
 - 1 start codon (AUG) (Also code for methionine)
 - **3** stop codons **UAA**, **UAG and UGA**

		U	С	Α	G	
e	υ	UUU UUC UUA UUA Leu	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G
28	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAG GIn	CGU CGC CGA CGG	U C A G
2	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG Lys	AGU }Ser AGC }Arg AGA }Arg	U C A G
25	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG Glu	GGU GGC GGA GGG	UCAG

Components Required for Translation

01. Amino acids.

02. Transfer RNA (tRNA).

reads the code and bring the amino acids

03. Aminoacyl-tRNA synthetases.

enzyme that makes Aminoacyl-tRNA (connect tRNA to the specific amino acid) **Aminoacyl-tRNA:** (tRNA + amino acid)

04. mRNA.

05. Functionally competent ribosomes.

Functional Ribosomes consist of 2 subunits:

- Small ribosomal subunit (has mRNA binding site)
- Large ribosomal subunit

06. Protein factors.

Catalytic or stabilizer for the synthetic machinery.

07. ATP and GTP. (Energy)

Protein Translation

Important to know that (441):

- tRNA has 2 important sites:
 - 1. The **anticodon** that forms base pairs with its <u>complementary sequence</u> on mRNA
 - 2. A region for attaching a specific amino acid
- Ribosomes have 2 subunits that join to form functional ribosome:
 - 1. Small subunit: where the mRNA comes and binds
 - 2. Large subunit: has 3 sites for tRNA:

A site: Acceptor site that binds to tRNA, which holds the new amino acid to be added to the polypeptide chain

Price: Peptidyl site that holds the tRNA carrying the growing polypeptide chain

★E site: Exit site that discharges the tRNA to leave the ribosome

Steps of Protein Translation

Initiation:

It requires **<u>ribosomal subunits</u>**, **<u>mRNA</u>**, **<u>aminoacyl-tRNA</u>** for methionine, <u>initiation</u> <u>factors</u> and <u>energy</u>. These all form the **initiation complex**.

- **1.** Small ribosomal subunit bind to the aminoacyl-tRNA and mRNA which carries the **start codon**.
- 2. The large ribosomal subunit binds to the small ribosomal subunit to complete the **initiation complex.**

The first stage is about binding the start codon to form the initiation complex

Steps of Protein Synthesis

Elongation:

- An aminoacyl-tRNA will attach to A site. the attachment will be facilitated by <u>elongation</u> <u>factors</u>.
- Peptidyl transferase is an enzyme that separates the growing chain from tRNA in the P site, and transfers the growing polypeptide chain to tRNA at A site
- The empty tRNA at P site moves to E site and discharge, and the tRNA with the growing chain moves to the P site.
- **4.** The **A site** will be **ready to receive** another aminoacyl-tRNA and repeat the steps.

Steps of Protein Synthesis

Termination :

Occurs when one of the three stop codons (UAA,UAG,UGA) reaches the A site.

- Release factor binds to the stop codon and cut the bond between the polypeptide and its tRNA in the P site.
- 2. This frees the polypeptide and the translation complex disassembles.

Summary:

- 1. Initiation: making initiation complex and attaching the start codon
- **2. Elongation:** adding amino acids and forming protein chain.
- **3. Termination:** free the polypeptide and disassemble translation complex.

Summary (441)

Features of Eukaryotic DNA Replication

1- Semiconservative 2-Bidirectional with multiple origins of replication 3-Primed RNA. 4-Semi-discontinous

DNA Replication

Take Home Messages

- DNA is the genetic material, so it must replicate faithfully and have the coding ability to produce proteins for all cellular functions.
- Only one strand of DNA (antisense strand) is transcribed into mRNA.
- The synthesized mRNA is protected from the destruction and prepared for translation through post-transcriptional modification.
- mRNA transcription and protein synthesis processes are the same in both prokaryotic and eukaryotic cells with some differences.

Quiz

1- Which of the following is components required for translation							
a) amino acid	b) tRNA	c) DNA ligase	d) A&B				
2- Which one of the following is responsible for transcription							
a) RNA polymerase I	b) RNA polymerase ll	c) DNA polymerase II	d) DNA polymerase l				
3- A portion of called, is into RNA							
a) gene, DNA , translations	b) DNA, gene , transcribed	c) DNA , gene , translations	d) gene , DNA , transcribed				
4- In which step of mRNA synthesis there's a chain that forms a short length of RNA-DNA hybrid ?							
a) elongation	b) initiation	c) termination	d) capping				
5- Which one of the following is start codon							
a) AUG	b) UAG	c) UGA	d) UAA				

4. A 5. A

3' B 5' B 1' D

Meshari Alshathri Talal Alharbi Azzam Alotaibi Basel Al-Zahrani Saleh Aldeligan Mohammed AlGhamdi Abdulaziz Lafy Rayan Alahmari Mohammed Alrobeia Our Team

> Ajwan Aljohani Mashael Alasmri Razan Almanjomi Razan Almohanna Mashael Alsuliman Reema Alhussien Moudi Alsubaie Renad Alayidh

Leaders

Sara Alsheikh & Mohammed Alshehri

biochemksumed442@gmail.com

🗿 slidesgo

