DRUG METABOLISM 442

Main text Male slide Female slide Extra info Doctor notes

Important

Pharmacology

Gy melan"

EDITING FILE

OBJECTIVES..

Recognize the importance of biotransformation

- Know the different sites for drug metabolism
- Define the major phase I and phase II metabolic reactions.
- Describe the modulation of liver microsomal enzymes by inducers and inhibitors
- Mention two drugs that are known as enzyme inducers and inhibitors.
- Know the impact of first pass metabolism on drug bioavailability.

Click for Useful **video**!!

METABOLISM (BIOTRANSFORMATION)

Definition: Chemical reactions which occur in the body to change drugs from non polar lipid (uncharged-unionized) soluble forms to polar water soluble (charged-ionized)forms that are easily excreted by the kidney. Importance:
 Inactivation or termination of drug action (most drugs)*

Detoxification

Biotransformation is required for protection of body from toxic metabolites

•Activation of product (convert inactive form of drug to active form)**

Sites:

- Liver (the major site).
- Intestinal Mucosa and Lumen
 - Plasma
 - Kidney
 - Skin
 - Lung

* to be easily excreted in urine and prevent accumulation.
** 441note: The patient takes it in the inactive form, it becomes active after the metabolism (activation happens inside the body).

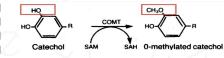
INTESTINAL MUCOSA AND LUMEN ENZYMES

Gut Mucosa

Mono-Amine Oxidase (MAO).*

Gut lumen (bacterial flora)**

• Glucouronidase


441notes:

*For drugs with amine groups (introducing one oxygen to amine group in oxidation) **produced by bacteria, (breakdown glucuronic acid in drugs)

PLASMA ENZYMES

Enzyme

Catechol O-methyl Trasferase (COMT)

Adds a methyl group to oxygen in catechol

Esterase

Substrate

-Catecholamines E.g. adrenaline+ serotonin

-Esters (to alcohol+acid) Act on drugs as local anesthetics E.g. Acetylcholine

-Amides (to amine+acid) Act on drugs as local anesthetics E.g. Lidocaine

Amidases

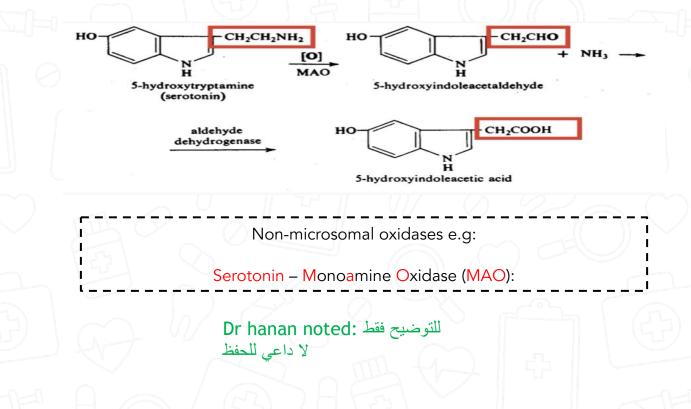
CELLULAR SITES OF DRUG METABOLISM IN LIVER

Mitochondria	• N-acetyl transferase: Introduction of acetyl group (CH3COO-) Monoamine oxidase enzyme (MAO): Oxidation of catecholamines as adrenaline
Cytoplasm	• e.g Alcohol dehydrogenase: oxidation of alcohol (by removal of H) (NAD+ \rightarrow NADH) Alcohol \rightarrow Aldehyde \rightarrow Acid Ethanol \rightarrow Acetaldehyde \rightarrow Acetic acid CH3CH2OH (lipid soluble) \rightarrow CH3CHO(toxic) \rightarrow CH3COOH(water soluble)
Microsomes	• Microsomal enzyme system = Cytochrome P-450 (responsible of Oxidation). There are more than 20 families e.g. CYP1, CYP2, CYP3 (In humans: only these 3 isoenzyme families are important) Sub-families are identified as A, B, and C etc. Oxidation-cytochrome P-450: <u>CYP 3A4</u> /5* carry out biotransformation of the largest number (30-50%) of drugs. Expressed in liver and intestine (responsible for first pass metabolism at this site) *dr hanan said omit 5

TYPES OF HEPATIC METABOLIC REACTION TWO PHASES OF HEPATIC METABOLIC REACTIONS:

Phase I (active/inactive metabolite)

Oxidation |Reduction |Hydrolysis


Phase II (usually inactive metabolite) • Conjugation(یاتح مع بعض)

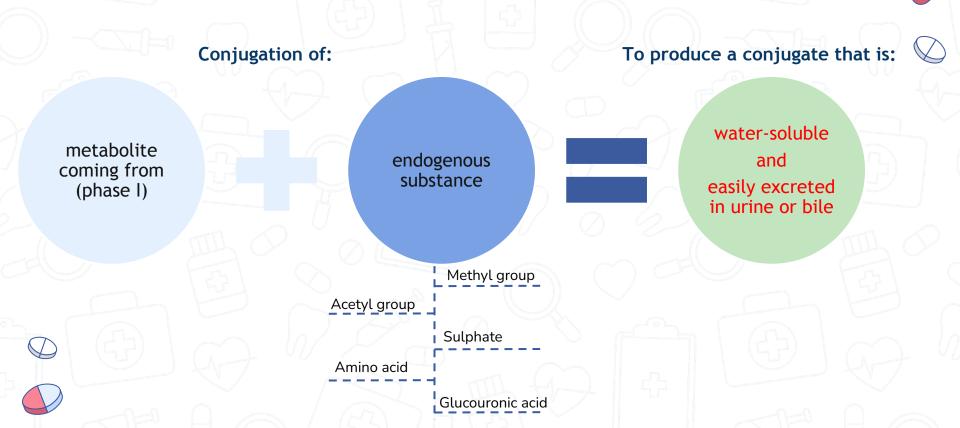
Inactive polar (conjugated metabolite) Easily excreted by the kidneys

Note: The active form of the drug converts to an active metabolite in order to have a long duration of action. the active metabolite will move to phase 2 in order to be inactive and water soluble(polar) for excretion

	Microsomal: occurs In microsome	-cytochrome F Oxygen	P450 enzymes(by addition of O),NADPH (cofactor) and
OXIDATION REACTIONS			 1-Monoamine oxidase (MAO): Is responsible for the metabolism of catecholamines as adrenaline and serotonin. E.g ★Moclobemide:is a Monoamine Oxidase inhibitor It increases serotonin in the brain (مينع تكسره) Used as antidepressant drug
Addition of O or removal of H The most important drug	Non-microsomal: occurs in cytosol or mitochondria (oxidases & dehydrogenases)	Oxidases:	Xanthine oxidase: Is required for the oxidation of xanthine. Hypoxanthine ^{Oxidase} > xanthine ^{Oxidase} > uric acid uric acid accumulation→ GOUT (النقرص) ★Allopurinol: is a xanthine oxidase inhibitor
metabolizing reaction			 used for treatment of Gout (prevent uric acid accumulation) (xanthine can be found in meats that's why GOUT used to be called ملك الأمراض ومرض الملوك
	B R	Dehydrogen ases:	Are required for oxidation of alcohols e.g: Alcohol dehydrogenase: converts alcohol to aldehyde
A DED			Aldehyde dehydrogenase: converts aldehyde to acid

OXIDATION NON-MICROSOMAL OXIDASES [CONTD...]

REDUCTION REACTION	Removal of oxygen or addition of Hydrogen microsomal <u>or</u> non-microsomal	HO HO HO HO HO HO HO HO HO HO HO HO HO H	NH ₂ 439,441note:Dopamine deficiency will cause Parkinson's disease, and it's treated with levodopa (because levodopa can cross the brain cells barriers while the dopamine can't directly)
	All are non microsomal Occurs by addition of	Esterases: hydrolyze drugs that are esters $\rightarrow R^{\circ} \xrightarrow{\circ} R^{\circ}$ Ester + H ₂ 0 \rightarrow Acid + Alcohol	e.g.: Acetylcholine (Ach) (Neurotransmitter) $\rightarrow \qquad $
HYDROLYSIS REACTION	Water in presence of enzymes as (esterases & amidases)	Amidases: hydrolyze drugs that are amides $\rightarrow \frac{1}{R} + \frac{1}{R}$ Amide + H ₂ 0 \rightarrow Acid + amine	e.g.: Lidocaine (used as local anesthetic) $\swarrow_{CH_3}^{CH_3} \stackrel{O}{=} \\ \swarrow_{CH_3}^{C_2H_5} \\ \overset{C_2H_5}{\times} \\ \overset{*:pictures from male slides}$


PHASE I REACTIONS RESULTS

Activation of pro-drug

e.g. Levodopa to Dopamine Pro drug= inactive form of the drug Inactivation of drug (termination of action) Conversion of active drug to active metabolite (long duration of action) Conversion of nontoxic drug to toxic metabolite Paracetamol(Panadol) →

Paracetamol(Panadol) → hepatotoxic metabolite (hepatic necrosis) Product might undergo phase II

PHASE II CONJUGATION REACTIONS

TYPES OF CONJUGATION REACTIONS

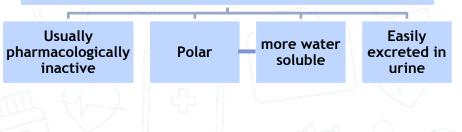
Conjugation reaction	Enzyme required
glucouronide conjugation (most common- the only microsomal)	Glucouronyl transferase
Acetylation (CH ₃ COO -)	N-acetyl transferase
Sulphation (SO ₄)	Sulfo transferase
Methylation (CH ₃)	Methyl transferase
Amino acids conjugation	Glycine conjugation

Phase(1) Oxidation, reduction→ microsomal, non microsomal Hydrolysis→ non microsomal

Phase(2) Non microsomal (except: glucouronidation)

PHASE II METABOLIC REACTIONS:

All are: non microsomal except glucouronidation


Glucouronide conjugation is a microsomal

process (the most common of phase II reactions).

Deficieny of <u>glucouronyl transferase enzyme</u> in neonates may result into toxicity with chloramphenicol (Gray baby syndrome).

441note: It is forbidden to give chloramphenicol to children under 2 years

CHARACTERISTICS OF PHASE II METABOLITES

FACTORS AFFECTING METABOLISM

Age: \downarrow rate of metabolism in neonates (newly born) and elderly

Diseases: | rate of metabolism in liver diseases (+kidney)

Degree of Protein Binding: trapped in the blood circulation resulting in decreasing the metabolism in the liver)

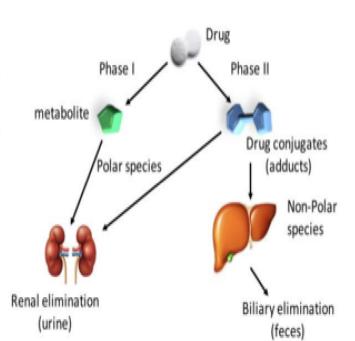
Concurrent use of drugs: Induction and inhibition (in liver microsomal enzymes)

Nutrition: malnutrition \downarrow rate of metabolism

Genetic polymorphism: Metabolism may vary from population to another due to the existence of different Not predictable forms of the metabolic enzymes

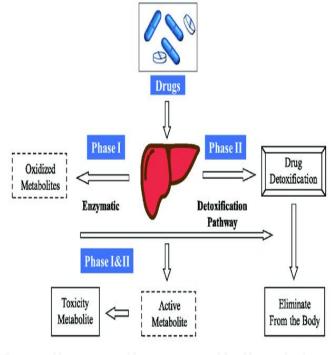
•	E.g. metabolism of	Slow acetylator phenotype	decrease in isoniazid metabolism	accumulation of isoniazid	risk of peripheral neuropathy
	isoniazid (Anti-TB) (acetylation by acetyl transferase)	Rapid acetylator phenotype	increase in isoniazid metabolism	results into excess metabolites produced (toxic) (زي سالفة الباندول)	risk of hepatitis

	Enzyme Induction	Enzyme inhibition		
	inducers:	Inhibitors:		
Liver microsomal enzymes	drugs that <u>increase</u> activities of liver microsomal enzymes and <u>increase</u> the metabolism of drug itself and other drugs taken with the inducer at the same time	drugs that <u>decrease</u> activities of liver microsomal enzymes and <u>decrease</u> the metabolism of the drug itself and other drugs taken concurrently		
metabolism and excretion of the drug itself and co-administered drugs	<u>↑Increase</u>	↓Decrease <mark>(delay)</mark>		
the action of the inducer drug itself and co-administered drugs	Decrease (short duration of action) <u>Lecrease</u> يتم تكسير الدواء من قبل نشاط الإنزيمات العالي قبل أن يؤدي فعاليته)	↑Increase (Prolong)		
May occur	Tolerance: <u>decrease</u> in the pharmacological action of the drug by continuous or <u>repeated administration</u>			


	Enzyme Induction	Enzyme inhibition
	decrease in action of one drug by administration of another drug	
	e.g. oral contraceptives + phenytoin (inducer)	e.g. warfarin + erythromycin (inhibitor)
Drug interactions	-Failure of oral contraceptive may lead to pregnancy if combined with phenytoin	-Inhibition of warfarin metabolism may lead to increase its anticoagulant effect (risk of bleeding)
	oral contraceptives + phenytoin→induce contraceptive metabolism→ Failure of oral contraceptive →pregnancy((*نشاط الانزيمات العالي للـphenytoin جعل مانع الحمل أيضًا المطلوب، المطلوب، واستمرار المرأة بأخذه بنفس الجرعة بلا اعتبار للتأثير الحاصل -بسبب أخذ الدوائين بنفس الوقت- يؤدي للحمل)	warfarin + erythromycin→ inhibit warfarin metabolism→ increase anticoagulant effect→ bleeding) warfarin الانزيمات المنخفض الـ erythromycin يجعل أيضاً الـ منخفض، فبالتالي يقل تكسيره فلا يتم التخلص منه بسرعة، ويقاؤه في الجسم طويلا يسبب زيادة تأثيره ويجلس بالجسم اطول ويسبب نزيف)
Examples of Enzyme inducers/inhibitors (حفظ)	Alcohol - Phenytoin(<mark>antiepileptic</mark>) Phenobarbitone (<mark>hypnotic</mark>)-Cigarette smoking - Rifampicin(<mark>Anti TB</mark>)	Grape fruits - Erythromycin(<mark>antibiotic</mark>)-Ketoconazol e(<mark>antifungal</mark>) - Cimetidine

<u>Quizlet</u>

SUMMARY AND REVISION


I-CLICK FOR USEFUL VIDEO!! 2-CLICK "Pharmacokinetics Drug metabolism".

Drug Metabolism

Drug metabolism

- Phases of metabolism
 - Phase I reactions -Oxidation
- Reduction/hydrolysis reactions
- Phase II reactions -
- conjugation
- Glucuronide
- Sulfate
- N-acetylation
- Methylation
- Glutathione/amino acid
- Drug interactions involving metabolism
 - Enzyme induction
 - Enzyme inhibition
- Factors affecting metabolism
- metabolism First-Pass effect

Allopurinol. B-Ketoconazole.	C-Rifampicin. D-Grapefruits	
Which of these affect metabo	lism?	
e. B- Metabolism of Isonia	zid. C-Diseases. D- All of the above	<u></u>
Where is MAO metabolized?		
Cytoplasm B-Mitochondria.	C-Microsomes. D-Lysosomes	
4 Example of a prodrug		
Moclobemide. B-Warfarin.	C-Levodopa. D-None of the above	

Q-1 What is the name of Xanthine oxidase inhibitor?

SAQ

Q-2 What is an example of a an antiepileptic?

Answers

1-Allopurinol

2-Phenytoin

Q-3 list 3 of Phase I Reactions Results?

SAQ

Q-4 What are the cellular sites of drug metabolism in liver

Answers

1-slide 10

2- microsomal Cytoplasm lysosomes Mitochondria

DONE BY THE AMAZING TEAM

Shahed Bukhari Kadi aldossari Hend Almogary Razan Almohanna razan almanjomi Noura bin hammad Lina alyahya Tharaa Alhowaish Reema Aljubreen Reema Alhussien *OUR AMAZING Q BANK **Renad Alayidh**

Mohammed Alrashod Mohammed aloraini Musaed almutairi Mohammed al-zeer Ibrahim alharbi Hamad Alotaibi Ahmed Abdualaziz

Reema Alguraini

You GOT THIS!

Contact us:Pharmacology442@gmail.com

Leader Khalid Al Rasheed