RECEPTORS FAMILIES

442

EDITING FILE

Pharmacology Team 4+2

Important Main text Male slide Female slide Extra info Doctor notes

OBJECTIVES

• Classify receptors into their main superfamilies

helping video!! 1 hour (:

- Recognize their different transduction mechanisms
- Identify the nature & time frame of their response

Note :the next lecture depend on it try to understand best luck (:

RECEPTOR FAMILIES -EXTRACELLULAR CYTOPLASM FLUID Reception Receptor Type II (G-protein coupled receptors)

Type III (Enzyme-linked receptors)

Open-close channel

Type I

(Ion Channel- Linked

Intracellular receptors)

Type IV (Receptors linked to gene transcription) Nuclear receptor>has to be lipid soluble

A RECEPTOR STRUCTURE :

- Ligand(signal molecule) recognition site.
- Inner catalytic domain (catalysis>break cell)

ligand- recognition —	N extracellular یترف علی ligand
PARAMANA	REAGON
catalytic domain Conspler+ Transduction	Intracellular change -result in response

THE DRUG WILL PRODUCE ITS ACTION IN 4 STEPS:

MAIN RECEPTOR CLASSES (RECEPTOR FAMILIES)

- Effect Persistency of drugs
- Cellular mechanism of the drugs
- Selectivity of drugs
- Development of new drugs

1,2 and 3 are surface down). receptors(on the cell membrane). Type 4 is intracellular receptor

Receptor Families

Important slide

Overview Will discuss in details Next slides	Type I (ion channel-linked)	Type II (G- PCR)	Type III (Enzyme - linked R)	Type IV (intracellular R)
Location	Membrane	Membrane	Membrane	Nucleus
Coupling	Direct	G-protein Indirect	Direct	Via DNA Indirect
Synaptic transmission	Very fast	Fast	Slow	Very slow
Response	Milliseconds	seconds	Minutes	Hours or days
Examples	Nicotinic receptors	Muscarinic receptors Adrenergic receptor	Insulin receptors	Estrogen steroid receptors
Effectors	Channels	Channels/ enzymes	Enzymes	DNA

Type I : ion channel-linked receptor (ligand gated ion channel)-(ionotropic receptor)

-Located at cell membrane (as it's on the cell membrane, it doesn't require to be lipid soluble).

Directly activated by ligand binding. (no second messenger needed)

Ion is a key word for type 1 -Directly related to <u>ion</u> channels (when the drug starts produce its effect, the effect will directly change the ion channel, open or close the channel).

- Involved in very fast synaptic transmission - Response occurs in milliseconds.

• **E.g**: **nicotinic acetylcholine** receptor that is activated by occupancy of a ligand as **acetylcholine**

Extra explanation

Nicotinic receptor only found inside ganglia for parasympathetic so it could activate any action related to parasympathetic system the process simply will be Neuron transmission (Ach) is a ligand -> bind to the recentor -> the recentor will open channel-> High Na intracellular

Neuron transmission (Ach) is a ligand -> bind to the receptor ->the receptor will open channel-> High Na intracellular ->depolarisation ->parasympathetic response such as heart relaxation

Notes from *436 & 437 & 441

Type III (Enzyme-Linked receptors) (Tyrosine Kinase-linked receptor)

- Located at cell membrane
- Linked to enzyme (with intrinsic enzymatic activity)
- Involved in response to hormones, growth factors.
- They control many cellular functions as metabolism and growth.

results in

• Response occurs in minutes to hours.

Activation of type III receptors

•E.g. Insulin receptors

- Dimerization of receptors
- Auto-phosphorylation
- Activation of kinases as tyrosine kinase with phosphorylation of tyrosine residue on their substrates and activation of many intracellular signaling pathways in the cell.

437 TEAM: Kinase enzyme make phosphorylation (adding phosphate) to the tyrosine. Tyrosine located in the intracellular protein, like enzyme

Type III (Enzyme-Linked receptors) (Tyrosine Kinase-linked receptor)

Ligands dimerize receptors يمسكون مع بعض

Activated Receptor autophosphorylates

Phosphorylate other proteins that it docks Intracellular activity-response-

الصور للتوضيح

Type IV: Nuclear receptors Gene transcription receptors

- Located intracellularly. (lipid soluble)
- Directly related to DNA (Gene transcription).
- Activation of receptors either increase or decrease protein synthesis.
- Response occurs in hours or days and persists longer.
- Their natural ligands are lipophilic hormones; steroids,thyroids, estrogen.
- They possess an area that recognizes specific DNA sequence in the nucleus which can bind it. This sequence is called a Responsive Element [RE].
- This means that the activated receptors are acting as: TRANSCRIPTION FACTORS [TF] \rightarrow expressing or repressing target genes.

Type IV: Nuclear receptors Gene transcription receptors

Type II Is the Most Abundant Type

(G-Protein coupled receptors)

Metabotropic-metabolism - receptor

- The largest family that accounts for many known drug targets.
- Located at cell membrane .
- Coupled to intracellular effect via G-protein Response through ion channels or enzymes
- (not direct)
- Involved in rapid transduction Response a &β) occurs in seconds.
- Eg:
- 1-<u>Muscarinic</u> receptors of <u>Ach (M)</u>
 2-<u>Adrenergic</u> receptors of <u>Noradrenaline</u> (α &β)

1-Muscarinic is receptor for both para and sympathetic system
-Which means it can activate response for both
2-Adrenergic is a receptor only for sympathetic
-which means it can only activate response for sympathetic in this scenario

G-protein coupled receptors Metabotropic Receptor

-will be discussed in details next slides-

(Guanine nucleotide-binding proteins)

- Regulatory proteins (regulation for intracellular events)
- Comprise of three subunits ($\alpha\beta\gamma$), α subunits possess GTPase activity.
- G proteins belong to the larger group of enzymes called GTPases.
- Regulate guanine nucleotides GDP, GTP.
- They bind and hydrolyze guanosine triphosphate (GTP) to guanosine diphosphate (GDP).
- They are active <u>'on</u>' when they are bound to <u>GTP</u>.
- They are inactive <u>'off</u>' when they are bound to <u>GDP</u>.

Receptors in this family respond to agonists by:

G-protein classes

When the G-protein trimer ($\alpha\beta\gamma$), binds to agonist-

occupied receptor , the a-subunit dissociates & is then free to activate an effector.

-Activation of the effector is terminated when the bound GTP molecule is hydrolyzed to GDP which allow α -subunit to recombine with ($\beta\gamma$) and returns to its inactive state.

Difference in their related G-Protein Classes

Type II : G-Protein Coupled receptors

Enzymes (To give Second messengers)

• Phospholipase C enzyme Inositol phosphate **system** (IP3+DAG)

• Inositol phosphate system (IP3+DAG)

• M1 & M3 Ach receptors couple to Gq to stimulate PLC.

• α1 Adrenoceptors couple to Gq to stimulate PLC.

IP3 = inositol trisphosphate DAG= diacylglycerol Adenyl cyclase enzyme (AC) -for ATP-Cyclic AMP system (cAMP)

Cyclic AMP system (cAMP):

• M2 & M4 Ach receptors couple to Gi to inhibit AC.

- a2 Adrenoceptors couple to Gi to inhibit AC.
- \cdot $\beta1\&2$ Adrenoceptors couple to Gs to stimulate AC

cAMP = cyclic adenosine monophosphate

Ion channels

E.g. Ach acts on muscarinic receptors in heart (opening of K-channel), to decrease heart rate

#439Team Type II receptors (G-Protein coupled receptors classes-target for G-)

Adrenoceptors (Alpha & Beta)	Cholinergic receptors (M)				
α1 Adrenoceptors couple to Gq to <u>stimulate</u> PLC = Contraction of smooth muscles ◀ second messenger is inositol phosphate system (IP3+DAG)	M1 & M3 Ach receptors couple to Gq to stimulate PLC. ◀ second messenger is inositol phosphate system (IP3+DAG))
 α2 Adrenoceptors couple to Gi to inhibit AC. ♦ Second messengers is cyclic AMP system (cAMP) 	M2 & M4 Ach receptors couple to Gi to inhibit AC Second messengers is cyclic AMP system (cAMP)				
 β1 &2 Adrenoceptors couple to Gs to stimulate AC Second messengers is cyclic AMP system (cAMP) 		Gq	G;	90 6.	
		Щ. М. 8.	₩ ₩ ₩	Que z qu	Щ. м.
- Adrenaline binds to $\alpha 2$ Adrenoceptors that will activate Gi (Inhibitory) protein. Gi protein will inhibit (AC) that will decrease cAMP Concentration = Decrease contraction.	- Acetylcholine works on bronchi by M3 Ach receptor that will activate Gq proteins and Gq proteins will activate (PLC) phospholipase c that will increase Ca concentration= Increase contraction of smooth muscles				
- Adrenaline works on heart muscles by binding to β2 Adrenoceptors, that will activate Gs (Stimulatory) protein. Gs protein will activate (AC), that will increase cAMP Concentration = Increase muscle contraction (tachycardia)	- Adrenaline works on smooth muscles by a 1 receptor that will activate Gq proteins and Gq proteins will activate (PLC) that will increase Ca concentration = Increase contraction				
Thx for #438					

Important slide

tant slide				
Ach receptors	Couple to	Intracellular mechanism		
M1 stimulatory	Gq	stimulate PLC	stimulation	
M2 inhibitory	Gi	↓ Inhibit AC (⊂CAMP) Opening of K-channels	:Heart (Bradycardia) (slow heart rate)	
M3 stimulatory	Gq	stimulate PLC	Contraction of Smooth muscles (bronchoconstriction)	الأعداد الفردية : stimulate الأعداد الزوجية: Inhibit
M4 inhibitory	Gi	Inhibit AC (cAMP)	Inhibition	
Adrenoceptors	Couple to	Intracellular mechanism	Sympathetic system response	m Q
β1 stimulatory	Gs	stimulate AC	Stimulation (tachycardia Increase heart rate Because ↑ Ca)	
a1 stimulatory	Gq	stimulate PLC	Contraction of smooth muscles	

RECEPTORS FAMILIES

Summary	Type I	Type ll	Type lll	Type IV
Location	Membrane	Membrane	Membrane	Nucleus
Coupling	Direct	G-Protein	Direct	Via DNA
Synaptic transmission	Very Fast	fast	slow	Very slow
Response	milliseconds	Seconds	minutes	Hours or days
Examples	Nicotinic receptor	-muscarinic Receptors -adrenergic receptors	Insulin receptors	Estrogen Steroid receptors
Effectors	channels	Channels/enzy mes	Enzymes	DNA

MCQ

Q-1 Which one of these G-Protein classes work as an inhibitor of the effector?

A) Gs. B) Gi. C) Gq. D) Both A&B

Q-2 Their natural ligands are lipophilic

A-Type I Receptors B-Type II Receptors C-Type III Receptors D-Type IV Receptors

Q-3 which of the following receptors is coupled with Gq protein ?

A) Alpha 1. B) Alpha 2. C) Beta 1. D) Beta 2

Q-4 When a ligand / Molecule comes near to a receptor, the first action will occur is

A-Reception. B- Transduction C- Recognition D- Response(effect)
Q-5 Its Response occurs in hours or days and persists longer
Type 2. B) Type 4. C) Type 1 D) Type 3

1-B 2-D 3-A 4-C 5-B Q-1 Which system gets activated when acetylcholine binds to M1 or M3 via Gq receptor ?

Q-2 Inositol phosphate system activates which enzyme?

SAQ

Answers

1- Inositol phosphate system

2-Phospholipase C enzyme

DONE BY THE AMAZING TEAM

Shahed Bukhari Kadi aldossari Hend Almogary Razan Almohanna razan almanjomi Noura bin hammad Lina alyahya Tharaa Alhowaish Reema Aljubreen Reema Alhussien *OUR AMAZING Q BANK **Renad Alayidh**

Mohammed Alrashod Mohammed aloraini Musaed almutairi Mohammed al-zeer Ibrahim alharbi Hamad Alotaibi Ahmed Abdualaziz You GOT THIS!

Special thanks to 441 team

Leader

Reema Alguraini

Contact us:Pharmacology442@gmail.com