DEVELOPMENT OF SKELETAL & MUSCULAR SYSTEM

Prof. Ahmed Fathalla Ibrahim El Fouhil

Dr Sameerah Y Shaheen

13 Dec 2021

OBJECTIVES

At the end of the lecture, students should be able to:

- ? List the different parts of mesoderm and the different divisions of somites.
- ? Differentiate bones according to their embryological origin and mode of ossification.
- ? Describe the ossification of long bones.
- ? Describe the main steps for development of limbs.
- ? Differentiate muscles according to their embryological origin.

Second Week

- Epiblast
- Hypoblast
- Amniotic cavity
- Yolk sac cavity

The Three Germ Layers

- ? Ectoderm
- ? Mesoderm
- ? Endoderm

Notochord stimulates neural tube formation which in turn stimulates development of the vertebral column.

The Neural Tube is a derivative of the ectoderm

Notochord: stimulates neural tube formation

Somatic mesoderm

Splanchnic mesoderm

Prof. Ahmed Fathalla El Fouhil

INTRAEMBRYONIC MESODERM

- Proliferates between Ectoderm & Endoderm EXCEPT in the central axis of embryo where NOTOCHORD is found.
- ? Differentiates into 3 parts:
- 1. Paraxial mesoderm: on each side of notochord.
- 2. Intermediate mesoderm
- 3. Lateral mesoderm
- Paraxial mesoderm divides into units (somites).
- ? Lateral mesoderm divides by intraembryonic coelom into:
- 4. Somatic mesoderm (between ectoderm & coelom).
- 5. Splanchnic mesoderm (between endoderm & coelom).

Specialization of Mesoderm

- Appearance of the notochord (first sign)
- Three collections of the mesoderm appear lateral to the notochord
- ? Somites
- Intermediate mesoderm
- ? Double sheets of lateral plate mesoderm

Specialization of Mesoderm

- Each one of somites divide into 3 parts:
- Sclerotome: form the vertebrae & ribs
- Dermatome: forms the dermis of the skin on the dorsal part of the body
- Myotome: forms the skeletal muscles of the neck, trunk & limbs

limb buds

- The upper and lower limbs develop from limb buds
- The upper limb bud appears earlier than that of the lower limb bud
- The upper bud → C4-T1
- The lower bud → L2 S3

Muscle Formation

 Myoblasts form a dorsal (epaxial) and a ventral (hypaxial) blocks of muscle tissue (extensors and flexors)

Hypaxial division:

Muscles of limbs & body wall

Epaxial division:

Extensors muscles of back, neck & spine

 Then, the motor nerves invade the limb bud

DEVELOPMENT OF LIMBS - 1

- ? The limbs bud appears as an elevation on the *ventrolateral* body wall resulting from proliferation of mesenchyme of the somatic layer of lateral mesoderm.
- ? Each limb bud is surrounded by an area of ectoderm.
- ? Upper limb buds appear at day 26 opposite the lower cervical segments.
- ? Lower limb buds appear at day28 opposite the lumbar & sacralsegments.

Apical ectodermal ridge

- Apical ectodermal ridge (AER) is a thick ectodermal area at the tip of the bud
- It stimulates the mesenchymal cells beneath
 It to divide (progress zone)
 Limb bud grows

DEVELOPMENT OF LIMBS - 2

- A & G: Apical ectodermal ridge appears at the apex of limb bud and stimulates proliferation of mesenchyme and elongation of limb bud.
- B & H: Distal ends of buds flatten into paddle-like hand & foot plates.
- C & I: Digital rays: appear as mesenchymal condensations that outline the patterns of digits.
- Power in the second of the
- **E & K:** Digits form inside rays, elongate & appear webbed.
- **F& L: Mesenchyme between digits disappears so digits are now separated.**Prof. Ahmed Fathalla El Fouhil

Cartilage ossifies by: Endochondral ossification

Myoblasts migrate from myotomes to form:

Muscles of limbs

Ulna

OSSIFICATION OF LONG BONES

Bone age is a good index of general maturation. Bone age is determined by:

- 1. Appearance of ossific centers in diaphysis & epiphysis (specific for each bone & sex)
- 2. Disappearance of epiphyseal plate (specific for each bone & sex)

DEVELOPMENT OF LIMBS - 3

- ? Originally, limb buds were at right angle of the trunk with:
 - -Cranial (preaxial) & caudal (postaxial) borders: radius and tibia are preaxial bones.
 - -Ventral & dorsal surfaces: flexor muscles are ventral.
- Puring 7th week, adduction of limb buds occurs with 90° rotation:
 - -In upper limb, rotation occurs laterally: radius is lateral & flexor muscles are anterior.
 - -In lower limb, rotation occurs medially: tibia is medial & flexor muscles are posterior.

DEVELOPMENT OF CRANIUM (SKULL)

- ? The skull develops from mesoderm around the developing brain.
- ? The skull consists of:
- 1. Neurocranium: protective case for brain
- 2. Viscerocranium: skeleton of face
- Pones of skull ossify either by:
 - *Endochondral ossification

*Intramembranous ossification

or

Bones of skull that ossify by intramembranous ossification:

Parietal

eminence

- 1. F = Frontal
- 2. P = Parietal
- 3. Z = Zygomatic
- 4. ST = Squamous temporal
- 5. Mand = Mandible
- 6. Max = Maxilla Posterolateral (mastoid) fontanelle

JOINTS

They develop from mesoderm between bones:

- ? A- In fibrous joints: mesoderm differentiates into dense fibrous connective tissue.
- P- In cartilaginous joints: mesoderm differentiates into cartilage.
- ? C- In synovial joints: a synovial cavity is formed inside mesoderm; mesoderm differentiates into synovial membrane, capsule & ligaments.

 Prof. Ahmed Fathalla El Fouhil

SUMMARY OF DEVELOPMENT OF BONE

All bones develop from MESODERM.

- ? AXIAL SKELETON:
 - *Vertebrae, ribs & sternum: from sclerotomes of somites (paraxial mesoderm)
 - *Skull: from mesoderm surrounding the brain
- ? APPENDICULAR SKELETON: from somatic part of lateral mesoderm

All bones ossify by endochondral ossification **EXCEPT**:

- 1. Some bones of skull
- 2. Clavicle

SUMMARY OF DEVELOPMENT OF MUSCLES

- ? All muscles develop from MESODERM EXCEPT:
- 1. Muscles of iris (eyeball)
- 2. Myoepithelial cells of mammary & sweat glands
- ? All skeletal muscles develop from myotomes of paraxial mesoderm EXCEPT: some head & neck muscles from mesoderm of pharyngeal arches

SUMMARY OF DEVELOPMENT OF MUSCLES

- ? Cardiac & smooth muscles develop from lateral mesoderm:
- 1. Cardiac muscles from: splanchnic part of lateral mesoderm
- 2. Smooth muscles:

*In the wall of viscera from: splanchnic part of lateral mesoderm

* In the wall of blood & lymphatic vessels from: somatic part of lateral mesoderm

SUMMARY OF DEVELOPMENT OF LIMBS

- Mesenchyme from somatic layer of lateral mesoderm proliferates to form limb buds.
- ? Apical ectodermal ridge stimulates proliferation & elongation of buds then cartilage formation.
- ? All bones of limbs ossify by endochondral ossification EXCEPT: clavicle.
- ? Muscles of limbs develop from myotomes.
- ? Rotation of limbs occur in opposite direction.
- Present of upper limb precedes that of lower limb.

Prof. Ahmed Fathalla El Fouhil

- ? Which one of the following group of muscles are derivatives from epaxial division of myotomes?
- 1. Muscles of back ——
- 2. Muscles of limbs
- 3. Muscles of viscera
- 4. Cardiac muscles

- ? Which one of the following bones ossifies by intramembranous ossification?
- 1. Vertebra
- 2. Humerus
- 3. Ribs
- 4. Mandible —

- Regarding the ossification of long bones, which one of the following statements is correct?
- 1. Primary ossific centre appears after birth.
- 2. Secondary ossific centre leads into ossification of diaphysis.
- 3. Long bones ossify by intramembranous ossification.
- 4. When epiphysis unites with diaphysis, growth of bone stops.

- ? Which one of the following is the result of rotation of upper limb?
- 1. The tibia becomes lateral.
- 2. The flexor muscles become posterior.
- 3. The ulna becomes medial.
- 4. The preaxial digit becomes medial.

Prof. Ahmed Fathalla El Fouhil