




الطربقة أصبحت معروفة للجميع 🗊 

تنسوهمن دعائڪم ،،،

# RNA Structure & synthesis

سسمراللهالرحمن الرحيم

مجهول : Team leader

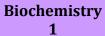
والشكر لجميع من ساهم في اخراجها بالصورة التي هي عليه وأخص بالشكر : أبو يسرا

عبدالعزيز التركي

Ocean Blue eye وجنودنا المجہولین ©



### **<u>C. Transcription from bacterial operons :</u>**


- structural genes (that <u>code for the enzymes</u> of a metabolic pathway)
   regulatory genes (that <u>determine their transcription</u> as a single long piece of mRNA)
  - in bacteria, structural genes are often found grouped together on chromosome together with the regulatory genes
    - ✓ thus , the genes are coordinately expressed (MCQ)(هاااااااام)
      - (this entire package is referred to as an operon) & we will speak about the best understood examples –lactose operon of E.coli -- which illustrates <u>both +ve & -ve regulation</u>.

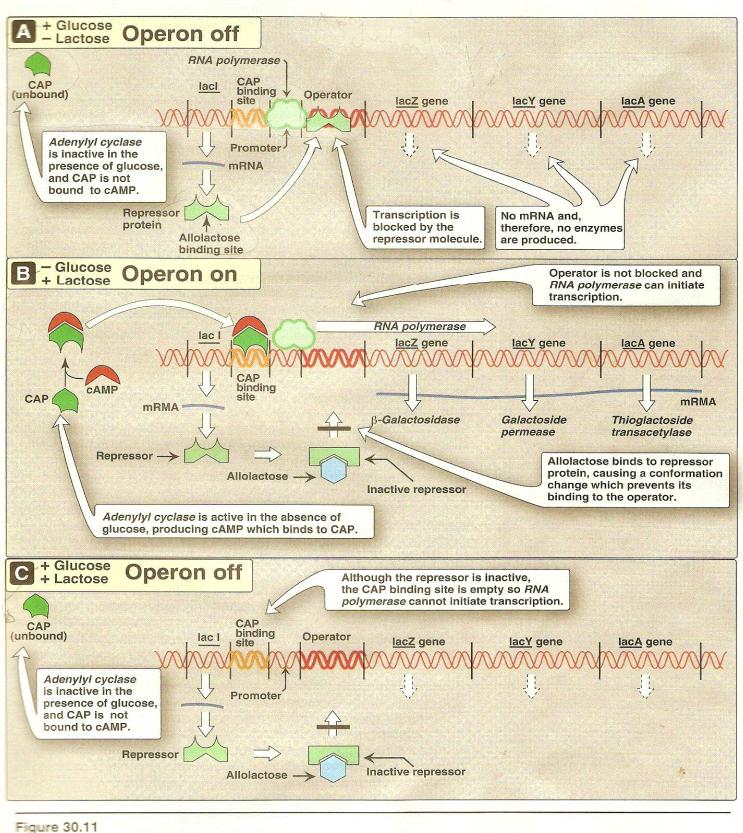
#### **<u>1. the lactose operon (lac operon) : (</u>** is coordinated expressed gene )

• It <u>(structural portion</u>) (MCQ) codes for 3 enzymes involved in the catabolism of the sugar lactose :

| <u>lacZ</u> genes        | <u>lacy</u> genes          | <u>lacA</u> genes          |
|--------------------------|----------------------------|----------------------------|
|                          |                            |                            |
| -codes for $\beta-$      | -codes for <i>permease</i> | -codes for                 |
| galactosidase            |                            | thiogalactoside            |
|                          |                            | transacetylase             |
| -(which hydrolyzes       | -(that facilitates the     | -(its physiologic function |
| lactose to → galactose & | movement of galactose      | is un known)               |
| glucose                  | into the cell              |                            |
| 8                        |                            |                            |
|                          |                            |                            |

- ✓ these enzymes are all produced when lactose is available to the cell (but glucose is not) (MCQ)
- note : bacteria use glucose as a fuel in preference to any other sugar






- 1. <u>catabolite gene activator protein</u> (CAP, sometimes called : cAMP regulatory portion or CRP) binding site
- II. the promoter (P): where RNA polymerase binds
- III. the operator site (O)
- IV. additional lac l gene : codes for the repressor protein

#### a lacZ , lacY , lacA genes are expressed when : (MCQ)

- $\checkmark$  the O site is empty .
- ✓ CAP binding site (upstream of P region ) is bound by a complex of cAMP & CAP protein .

#### see : 😊



The lactose operon of E. coli.



- 1) the repressor protein binds to the operator site (which is down stream of the promoter region)
- 2 ) this interferes with the progress of RNA polymerase & blocks transcription from structural gene (negative regulation)
- 3) a denylyl cyclase is <u>inactive</u> in the presence of glucose, so → <u>no cAMP</u>
   → <u>no cAMP-CAP complex can form</u>
- \* So, the final result No mRNA and, therefore, no enzymes are produced.

#### b. when only lactose is available:

- a small amount of lactose is converted to <u>allolactose</u>. (MCQ)
  - what is allolactose & what it is function ?
  - allolactose is inducer

- that binds to <u>repressor protein</u>, causing a conformation change which <u>prevent</u> its binding to the operator

- because no glucose is available → adenylyl cyclase is active → sufficient quantity of cAMP → cAMP-CAP complex can form → cAMP-CAP complex binds to the CAP binding site → allows RNA polymerase to effectively intiate transcription (+ve regulation)
- $\checkmark$  the transcript is a <u>polycistronic</u> mRNA molecule , encoding all 3 enzymes (βgalactosidase , permease , thiogalactoside transacetylase)
- ✓ translation of mRNA is initiated at 3 different start codons , produces the enzymes that allow lactose to be used for energy production by the cell

N.B : eukaryotic cell produce only <u>monocistronic</u> messages . that is , each eukaryotic mRNA moleculeencodes just 1 protein (MCQ)



a denylyl cyclase is inactive in the presence of glucose, so → no cAMP → no cAMP-CAP complex can form → CAP binding site remains empty → RNA polymerase is unable to effectively intiate transcription, even though the repressor is not bound to the operator region → the 3 genes (lacZ, lacY, lacA) are not expressed.

| Only glucose                                                                                                                                                         | Only lactose                                                                                                                                                                                                                                                                                                      | Glucose & lactose                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - the repressor protein binds to the operator site                                                                                                                   | - the repressor protein does not<br>binds to the operator site ( cuz of<br>allolactose )                                                                                                                                                                                                                          | - the repressor protein<br>does not binds to the<br>operator site ( cuz of<br>allolactose )                                                                                                                                                                                                                                                 |
| - a denylyl cyclase is <u>inactive</u> in<br>the presence of glucose, so $\rightarrow$<br><u>no cAMP</u> $\rightarrow$ <u>no cAMP-CAP</u><br><u>complex can form</u> | <ul> <li>because no glucose is available</li> <li>→ adenylyl cyclase is active → sufficient quantity of cAMP → cAMP-CAP complex can form → cAMP-CAP complex binds to the CAP binding site</li> </ul>                                                                                                              | <ul> <li>a denylyl cyclase is<br/>inactive in the presence of<br/>glucose, so → no cAMP</li> <li>→ no cAMP-CAP complex<br/>can form → CAP binding<br/>site remains empty →</li> <li>RNA polymerase is unable<br/>to effectively intiate<br/>transcription, even though<br/>the repressor is not bound<br/>to the operator region</li> </ul> |
| - the final result No mRNA and,<br>therefore , no enzymes are<br>produced .                                                                                          | - the transcript is a<br><b>polycistronic</b> mRNA molecule ,<br>encoding all 3 enzymes (β–<br><b>galactosidase</b> , permease ,<br>thiogalactoside transacetylase)<br>note : eukaryotic cell produce<br>only <u>monocistronic</u> messages .<br>that is , each eukaryotic mRNA<br>moleculeencodes just 1 protein | - the 3 genes ( <b>lacZ , lacY , lacA</b> ) are not expressed                                                                                                                                                                                                                                                                               |



 transcription is <u>more</u> complicated in eukaryotes than prokaryotes.

 $\blacksquare$  Note : you know that RNA polymerase bind to promoter region and initiate Transcription . ( with it , several transcriptin factors bind either to Promoter region or some distance from it )

\_ . . \_ . . \_ . . \_ . . \_ . . \_ . . \_ . . \_ . . \_ .

<u>Itranscriptin factors</u> function : it is <u>protein</u> that determines what genes are to be transcribed.

For all these to happen we should have <u>double helix DNA</u> that assume <u>a loose</u> Conformation and dissociate <u>temporarily</u> from the nucleosome core.(MCQ) (very important)

A - Chromatin structure & gene expression :

-DNA + histone = nucleosome -> affect ability to transcription.

-Regarding DNA transcription : (always come in exams )(MCQ)

|       | Can transcriped                                                     | Can not transcriped                                       |  |  |  |  |
|-------|---------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|
|       | Relaxed form of chromatin called <u>euchromatin(active)</u>         | Highly condensed form called<br>Heterochromatin(inactive) |  |  |  |  |
| <br>ا | Chromatin remodeling : interconversion of active & inactive forms . |                                                           |  |  |  |  |

\* Two major influences on choromosome structure & activity :

- 1) DNA methylation .
- 2) histone acetylation .

(MCQ)We notice that the genes that are in permanent inactive form <u>Bernare methylated DNA (5 methylcytosine)</u> Than the active form .(MCQ)

We take the DNA of one of the X chromosome of a female & we notice that :(see what happen when acetylated or methylated)

| Highly methylated        | Histone become Highly acetylated                                                                                |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| heterochromatin          | Euchromatin                                                                                                     |  |
| Transcription turned off | Actively transcriped .( chromatin<br>become looser.<br>So, the DNA become more<br>Accessible to transcription ) |  |

**B** - **RNA** polymerase in the nucleus of eukaryotes are :

1) three classes ( each class recognize particular type of genes)

- 2) large enzyme .
- 3) multiple subunit.

| RNA polymersse 1                                               | RNA polymersse 11                                                                                   | RNA polymersse III                                                                                                      |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| synthesize the precursor of the large RNAs (285,185 and 5.8 S) | synthesize the precursor of<br>the <b>messenger RNAs</b> that<br>Translated to produce<br>Protein . | this enzyme produces the <u>small</u><br><u>RNAs</u> , including tRNA, the<br>small 5s riposomal RNA, &<br>some snRNAs. |
| XXXX                                                           | it also synthesize small<br>nuclear <b>RNA (snRNA)</b>                                              | See there                                                                                                               |
| in <u>nucleolus</u> (not nucleus )(MCQ)                        | in <u>nucleoplasm</u>                                                                               |                                                                                                                         |
| (note that mRNA & tRNA are synthesized In the nucleoplasm )    | ( note that it is used to<br>Produce viral DNA by some<br>viruses )                                 |                                                                                                                         |

So,

What come in exams : 1) snRNA (in polymerase II&III) 2) is in nucleolus 3) polymerase I synthesize <u>large</u> RNAs . but, synthesize small RNAs 4)rRNA in polymerase III Is it easy now <sup>(i)</sup> ??

a) promoters for class II genes:

### 1. Contain 3 box :

<u>a) Hogness box or TATA box: (ATATAAAA)</u>

- a sequence of DNA nucleotides almost identical to <u>Pribnow box</u> (TATAAT) (MCQ)
- usually found about 25 nucleotides upstream (-25) of initial base transcription start sit of mRNA molecule

**b)** CAAT box :( GGCCAATCT)

- Found between 70 and 80 nucleotide upstream (-70 or -80)

#### C) GC box :( GGGCGG)

- Many promoter contain this box

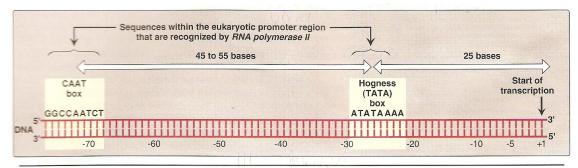



Figure 30.12

Eukaryotic gene promoter concensus sequences.

### 2. Cis-acting genetic elements : (DNA sequence Allilility

 ✓ Because TATA box, CAAT box and GC box are found on the <u>same</u> molecule Of DNA دائما يأتى بالاختبار هام جدا as genes

being transcribed they are called cis-acting genetic elements

<u>3. Cis-acting genetic elements serve as binding sites for</u> protein called **general transcription factor**:

- which in turn interact with each other and with RNA polymerase  $\Pi$
- Transcription factors encode by genes on <u>different</u> <u>chromosomes</u> ( not the same gene as cis )
- Because its synthesis in <u>cytosol</u> can diffuse through the cell to their point of action (which may be different chromosome), they are called <u>trans-acting</u> <u>elements</u>
- (it is <u>protein</u> not DNA sequence note the difference (MCQ)).
- they can either stimulate or inhibit transcription of particular genes
- Note : Promoter- binding transcription factors: *CTF*, *SP1*, *TFIID*

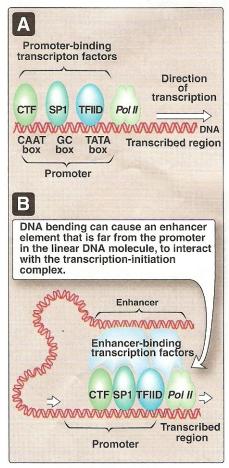



Figure 30.13 A. Eukaryotic general transcription factors bound to the promoter. CTF

factors bound to the promoter. CTF, SP1, and TFIID are general transcription factors. B. Enhancer stimulation of *RNA polymerase II*.



#### Note: What is Enhancers ?? S

✓ special cis- acting DNA sequence (always come in exams)

And note: because it is Cis so it is DNA sequence not protein (IIIIIIMP):©.

- ✓ **increase** the rate of **initiation** of transcription by *RNA polymerase II*
- ✓ must be in the <u>same chromosome</u> as the gene whose transcription they stimulate.
- ✓ they can be located "upstream" (to the 5'-side ) or "downstream" (to the 3'-side ) of the transcription start site .
- ✓ they can be close to or thousand of base-pair away from the promoter .
- $\checkmark$  they can occur on either strand of the DNA .
- ✓ contain DNA sequences called "response elements" that bind specific transcription factor called activator

**So**, By bending or looping the DNA, these enhancer- binding factor can interact with transcription factors bound to a promoter & with *RNA* polymerase II, thereby stimulating transcription

<u>Note</u> : **Silencers** act over long distances to <u>reduce</u> the level of gene expression.

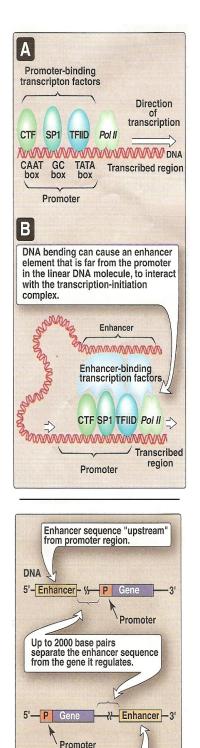
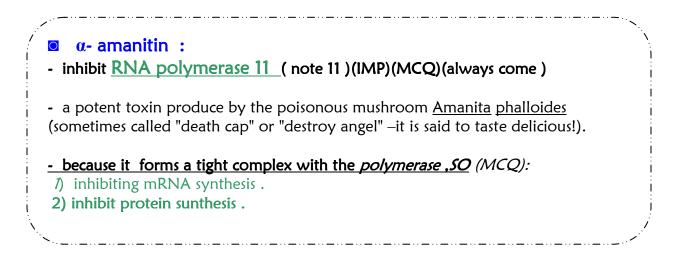




Figure 30.14 Some possible locations of enhancer sequences.

An enhancer sequence can be "downstream" from the promoter region.



#### c) Inhibitors of RNA polymerase II:



### **B. Mitochondrial RNA polymerase :**

- Mitochondria contain a single *RNA polymerase* that **resembles bacterial** <u>*RNA polymerase*</u> more closely than it does the eukaryotic enzyme.



| Biochemistry<br>11 |  |
|--------------------|--|
|                    |  |