AUTOCOIDS (LOCAL HORMONES)

- **Endogenous substances with biological activity.**
- Local hormones
 - 1. Not released or stored in glands.
 - 2. Not circulated in blood.
 - 3. are formed at the site of action.
 - 4. Produce localized action.

AUTACOIDS

CLASSIFICATION

Biologically active amines:

histamine – serotonin

Lipid derived autacoids (Eicosanoids)

prostaglandins –leukotrienes-thromboxanes

Vasoactive polypeptides e.g. kinins – Angiotensin – Endothelin-Natriuretic peptide- Vasopressin substance P

Endothelium derived autacoids Nitric oxide

HISTAMINE

SYNTHESIS

Histamine decarboxylase

Histidine — Histamine

OCCURRENCE

Tissues exposed to external environment (GIT, lung, skin, brain) - stored in mast cells and basophiles.

METABOLISM

- Monoamine oxidase (MAO).
- Diamine oxidase or histaminase.
- Imidazole N-methyl transferase

RELEASE

Immunologic release:

mast cells sensitized by IgE attached to their surface membrane.

Non-Immunologic release (Drug-induced):

- **morphine** Curare apomorphine
- Chemical and physical injury of mast cells

Mechanism of action (H1- H2- H3)

H1 receptors

- coupled to phospholipase C (IP3& DAG)
- smooth muscles (contraction of bronchi, GIT & uterus except blood vessels).

H2 receptors

- Stimulate adenyl cyclase enzyme & increase cAMP
- Heart (+ ve inotropic & chronotropic effects)
- Stomach (acid secretion).

H3 receptors

- G-protein -coupled
- presynaptic sites CNS & inhibit release of other neurotransmitters.

Pharmacological actions

Contraction of smooth muscles (bronchi, uterus and GIT).

CVS

- Vasodilatation of BV
- Increased capillary permeability (oedema)
- Tachycardia: Cardiac stimulation (H2)

- Dilatation of cerebral vessels (headache, histamine cephalgia)
- Exocrine glands: stimulates gastric secretion.
- Stimulation of sensory nerve endings (pain & itching)
- Skin: Triple response
- Reddness (vasodilatation of capillaries)
- Wheal (oedema)
- <u>Flare</u> (stimulation of sensory nerve endings).
- Release of catecholamines from adrenal medulla.

■ Histamine agonists

For diagnosis of phaeochromocytoma.

- **Histamine Antagonism**
- 1. Mast cells stabilizers e.g. cromoglycate & corticosteroids.
- 2. Physiological antagonism by adrenaline
- 3. Receptors antagonists
- H1- receptor blockers (antihistaminics-allergy)
- H2- receptor blockers (peptic ulcer).

H1-receptor blockers (Antihistaminics)

Mechanism of action

- They are competitive antagonists for H1 receptors.

Pharmacological effects

- H1-receptor blockade: they block histamine effects on smooth muscles and blood vessels.
- Atropine like actions: dry mouth, urinary retention, tachycardia (side effects).
- Alpha- blocking activity (postural hypotension).
- Block serotonin receptors as cyproheptadine

CNS

- Sedation
 - First generation produces sedation & hypnosis
 - Second generation have little or no sedative action.
- Antiemetic action (Motion sickness)
- Antiparkinsonian effects

Table 16–2. Some H_1 antihistaminic drugs in past or current clinical use.

Drugs	Usual Adult Dose	Anti- cholinergic Activity	Comments						
FIRST-GENERATION ANTIHISTAMINES									
Ethanolamines Carbinoxamine (Clistin)	4–8 mg	amine were	Slight to moderate sedation						
Dimenhydrinate (salt of diphenhydramine) (Dramamine)	50 mg	as ₁₄₁ ared s	Marked sedation; anti-motion sickness activity						
Diphenhydramine (Benadryl, etc)	25–50 mg	d rec 111 05 stor and lik-	Marked sedation; anti-motion sickness activity						
Doxylamine	1.25–25 mg	nd	Marked sedation; now available only ir OTC "sleep aids"						
Ethylaminediamines Pyrilamine (Neo-Antergan)	25–50 mg	e heart are	Moderate sedation; component of OTC "sleep aids"						
Tripelennamine (PBZ, etc)	25-50 mg	+ 010	Moderate sedation						
Piperazine derivatives Hydroxyzine (Atarax, etc)	15–100 mg	nd	Marked sedation						
Cyclizine (Marezine)	25–50 mg	s probably	Slight sedation; anti-motion sickness activity						
Meclizine (Bonine, etc)	25–50 mg	ve eneces at some serotonin, serotonin, or best energy	Slight sedation; anti-motion sickness activity						
Alkylamines Brompheniramine (Dimetane, etc)	4–8 mg	rable rations	Slight sedation						
Chlorpheniramine (Chlor-Trimeton, etc)	4–8 mg	fifthis offort	Slight sedation; common component of OTC "cold" medication						
Phenothiazine derivatives Promethazine (Phenergan, etc)	10–25 mg	deals, see h	Marked sedation; antiemetic						
Miscellaneous Cyproheptadine (Periactin, etc)	4 mg	ripie daugs ed-sedation pudsive use	Moderate sedation; also has antiserotonin activity						

First generation antihistaminics

Classifications

1. Ethanolamine:

Diphenhydramine- Doxylamine (sedative-antiemetic)

2. Piperazine:

Meclizine – cyclizine (antiemetic)

3. Phenothiazine:

promethazine (sedative - antiemetic)

- 4. Alkylamine: chlorpheniramine (cold/allergy, OTC)
- 5. Miscellaneous: Cyproheptadine

First generation antihistaminics

Pharmacokinetics

- Well absorbed orally,
- Short duration 3-6 hr
- Widely distributed,
- Penetrate BBB
- Metabolized in the liver.

Side effects

- Sedation and drowsiness
- Antimuscarinic effects
- Alpha blocking adverse effects
- Excitation in high doses in children

Second generation antihistaminics

Fexofenadine- Cetirizine, Loratidine-Terfinadine, Astemizole - Acrivastine

Advantages of second generation

- Can not cross BBB
- No sedation
- Less atropine like actions
- Longer duration of action
- BUT More expensive

USES of Antihistaminics

- Allergic reactions
- Rhinitis, hay fever, mild asthma, conjunctivitis, urticaria.
- Chlorpheniramine
- Second generation (mostly used)
- Anti-emetic in motion sickness& Vestibular disturbances
- dimenhydrinate –promethazine-cyclizine-Sedation promethazine

H2 receptor antagonists

- Cimetidine Ranitidine- Famotidine
- Inhibit gastric secretion
- Cytochrome p450 inhibitor (only cimetidine).
- Treatment of Peptic ulcer.

Serotonin (5-Hydrpxytryptamine, 5-HT)

Synthesis

- L-tryptophan by hydroxylation to give 5hydroxy tryptophan, decarboxylated again to 5-HT.
- in enterochromaffin cells of GIT and in CNS.

Serotonin

Present in

- GIT (enterochromaffin cells)
- Platelets
- CNS (raphe nuclei of brain stem)
- Pineal gland, it acts as a precursor to melatonin.

Metabolism

- MAO into 5-hydroxyindole acetic acid (5-HIAA) which is excreted in urine.
- Urinary 5-HIAA is increased by carcinoid tumor.

Mechanism of Action:

5HT1 receptors inhibit adenylate cyclase cAMP (CNS).

5HT2 receptors linked to PLC raising IP3 & DAG levels (smooth muscles-platelets – CNS).

5HT3 receptors linked to membrane ion channels (Sensory and enteric nerves & Area postrema).

5HT4 receptors CAMP (enteric N.S. – CNS, smooth muscles).

5HT 6, 7 & 8 unkown (CNS) (Figure 16-4)

Table 16-3. Serotonin receptor subtypes.

Receptor Subtype	Distribution	Postreceptor Mechanism	Partially Selective Agonists	Partially Selective Antagonists
5-HT _{1A}	Raphe nuclei, hippocampus	Multiple, G _i coupling dominates	8-OH-DPAT	WAY100635
5-HT _{1B}	Substantia nigra, globus pallidus, basal ganglia	G _i , ↓ cAMP	CP93129	droml a
5-HT _{1Da,b}	Brain	G _i ,↓cAMP	Sumatriptan	fig. to the
5-HT _{1ε}	Cortex, putamen	G _i ,↓cAMP		
5-HT _{1F}	Cortex, hippocampus	G _i ,↓cAMP	Notanian No.	•••••
5-HT _{1P}	Enteric nervous system	G _o ;slow EPSP	5-Hydroxyindalpine	Renzapride
5-HT _{2A}	Platelets, smooth muscle, cerebral cortex, skeletal muscle	G _q ,↑IP₃	α-Methyl-5-HT	Ketanserin
5-HT _{2B}	Stomach fundus	G _q ,↑IP ₃	α-Methyl-5-HT	SB204741
5-HT _{2C}	Choroid, hippocampus, substantia nigra	G _q ,↑IP ₃	α-Methyl-5-HT	Mesulergine
5-HT ₃	Area postrema, sensory and enteric nerves	Receptor is a Na+-K+ ion channel	2-Methyl-5-HT, m-chlorophenylbiguanide	Tropisetron, ondansetron, granisetron
5-HT ₄	CNS and myenteric neurons, smooth muscle	G₅,↑cAMP	5-Methoxytryptamine, renzapride, metoclopramide	synthesis in car-
5-HT _{5A,B}	Brain	↓cAMP	nitlanuoluonessaas jai-eumonessa	ionement of the
5-HT _{6,7}	Brain	G₅,↑cAMP	zadsta gudre aldive her. W.D datum	Clozapine (5-HT ₇)

8-OH-DPAT = 8-Hydroxy-2-(di-n-propylamine) tetralin; CP93129 = 5-Hydroxy-3(4-1,2,5,6-tetrahydropyridyl)-4-azaindole; SB204741 = N-(1-methyl-5-indolyl)-N'-(3-methyl-5-isothiazolyl) urea; WAY100635 = N-tert-Butyl 3-4-(2-methoxyphenyl) piperazin-1-yl-2-phenyl propanamide

Pharmacological Actions

- Vasoconstriction of renal, pulmonary& cerebral vessels.
- Vasodilatation of skeletal muscles& Heart BV
- Weak inotropic and chronotropic effects blunted by effects on the baroreceptors, chemoreceptors and vagal efferents that result in bradycardia.
- Smooth Muscle: contraction of smooth muscle (GIT, bronchial tree and uterus, 5-HT4).
- Weak bronchoconstriction

- Platelets aggregation
- Hypotension -hypertension-hypotension
- Hypotension due to
- activation of chemoreceptor nerve endings
- direct vasoconstriction.
- Hypotension due to skeletal vasodilatation.

Stimulation of sensory nerve endings (pain & itching sensation).

CNS

- Control mood, temp
- Inhibit appetite (anorexigenic effect)
- Anxiety
- Induction of vomiting (5HT3).
- Diseases migraine, carcinoid syndrome, anxiety

SEROTONIN AGONISTS

Sumartiptan

- 5HT1d agonist cranial vessels vasoconstriction.
- It has no CNS effects.
- Treat migraine attacks

Buspirone and Ipsapirone

- Partial 5HT1A agonists.
- anxiolytics in anxiety disorders.

Tegaserod

- partial 5HT5 agonist
- used for irritable bowel syndrome with constipation

Dexfenfluramine

- Stimulate 5-HT release.
- appetite suppressant (anorexigenic action)

Urapidil

- 5-HT1A agonists
- Decrease centrally sympathetic tone and increase vagal tone
- Used to control blood pressure

5-HT reuptake inhibitors

Fluoxetine- paroxetine. They are useful antidepressants

SEROTONIN ANTAGONISTS

Block of Synthesis Pharachlorophenylalanine (PCPA).

Block of Storage: Resepine.

Receptors Blockers:

Cyprohepatadine (Periactin):

- 5-HT2 antagonist.
- histamine H1-and muscarinic antagonists.
- Carcinoid tumors.

Pizotifen (Mosegor)

- similar to cyproheptadine.
- appetite stimulation.

Methysergide (Deseril):

- 5-HT2 antagonist
- migraine prophylaxis carcinoid tumors

Ondansetron and Granisetron

- 5HT3 antagonists
- Block vomiting centers and CTZ
- Antiemetics

Metoclopramide

- blocks 5HT3 receptors (antiemetic action)
- blocks dopamine receptors (antiemetic action)
- stimulates cholinergic system (prokinetic)

Ketanserin

- blocks 5HT2, H1, alpha 1 receptors
- Hypertension

Carcinoid tumor

Malignant tumor in enterochromaffin cells of GIT.

Features

- Bronchospasm
- GIT: diarrhea-colics
- Flushing of the face

Diagnosis

- High plasma level of serotonin
- High 5-HIAA in urine

Treatment

Cyproheptadine- Methysergide.

Ergot alkaloids

- Formed by fungus
- several receptors (Dopamine, 5-HT, α-receptors).

Pharmacological actions

- I. CNS
- 1.Stimulate Dopamine receptors & decrease prolactin and parkinsonism.
- 2. Stimulation of cerebral vessels (5-HT2).

II. Smooth muscles

- 1. Vasoconstriction of blood vessels
- 2. Contraction of uterus
- 3. Nausea, vomiting, diarrhea

Table 16-5. Effects of ergot alkaloids at several receptors.1

α Adrenoceptor	Dopamine Receptor	Serotonin Receptor (5-HT ₂)	Uterine Smooth Muscle Stimulation
-	- - - -	a nu	0
+	+	– (PA)	+++
(PA)	0	+ (PA)	+++
0	+++	− − ++ in CNS	+
+/0	+/0	(PA)	+/0
	- (PA)	α Adrenoceptor Receptor - +++ (PA) 0 +++	α Adrenoceptor Receptor Receptor (5-HT₂) + + - + + (PA) (PA) 0 + (PA) 0 +++ ++in CNS

¹Agonist effects are indicated by +, antagonist by –, no effect by 0. Relative affinity for the receptor is indicated by the number of + or – signs. PA means partial agonist (both agonist and antagonist effects can be detected).

Types & uses

- Migraine treatment : Ergotamine & dihydroergotamine (5HT1 & 5HT2)
- Migraine prophylaxis: Methysergide (5HT2)
- Postpartum hemorrhage:
 - **Ergometrine (Ergonovine)**
- Endocrine disorders (hyperprolactinemia) Parkinsonism
 - Bromocriptine (dopamine agonist).

Side Effects

A condition called Ergotism

- Nausea, vomiting, diarrhea
- Severe vasospasm (gangrene)
- Confusion, weak pulse