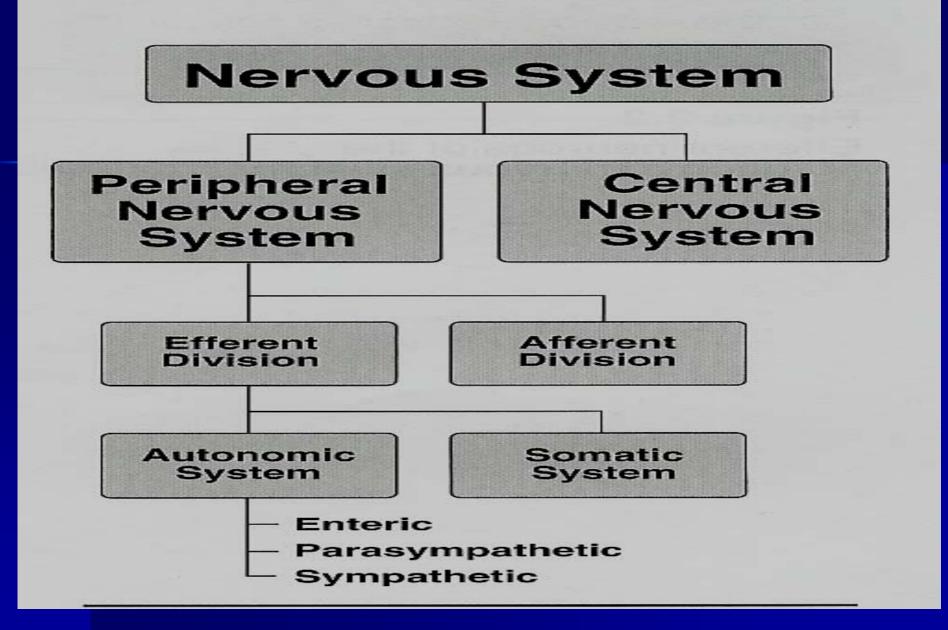
Cholinomimetic drugs (cholinergic drugs) Cholinomimetic drugs (cholinergic drugs)

What students should know:
Nervous system
Classifications of autonomic nervous system
Cholinergic nervous system
Chemical neurotransmitters Synthesis – Actions – Metabolism

Cholinergic receptors Cholinomimetic drugs & anticholinergic drugs

- Kinetics
- Dynamics
- Uses


Adverse effects & contraindications.

The nervous system is a communication network that allow an organism to interacts with the environment in appropriate ways.

It can be classified in to the central nervous system and the peripheral nervous system.

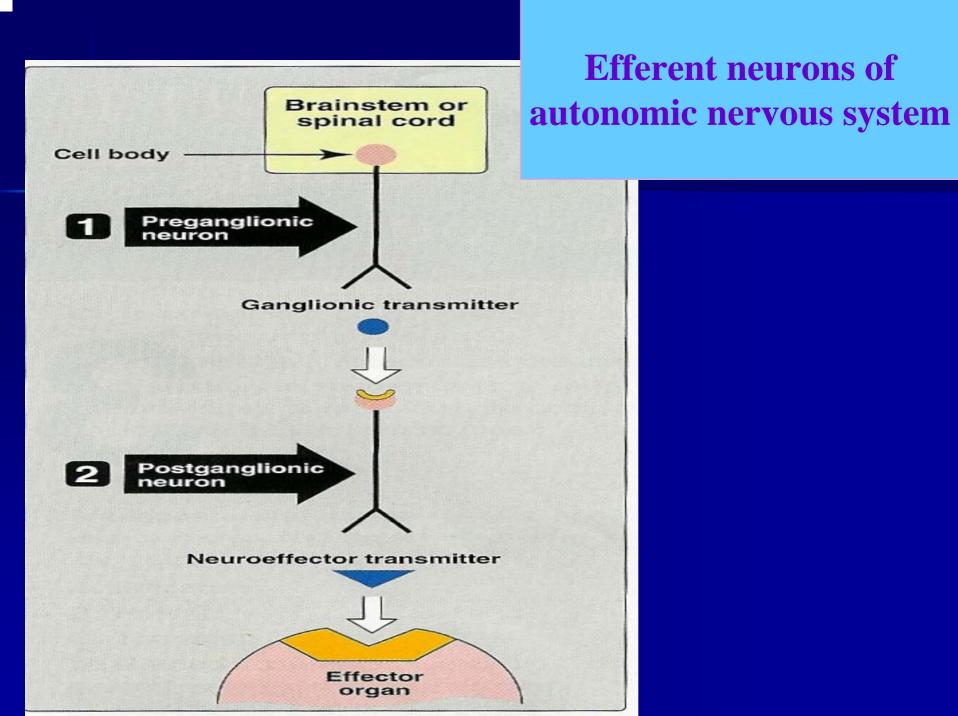
The central nervous system is composed of brain and spinal cord.

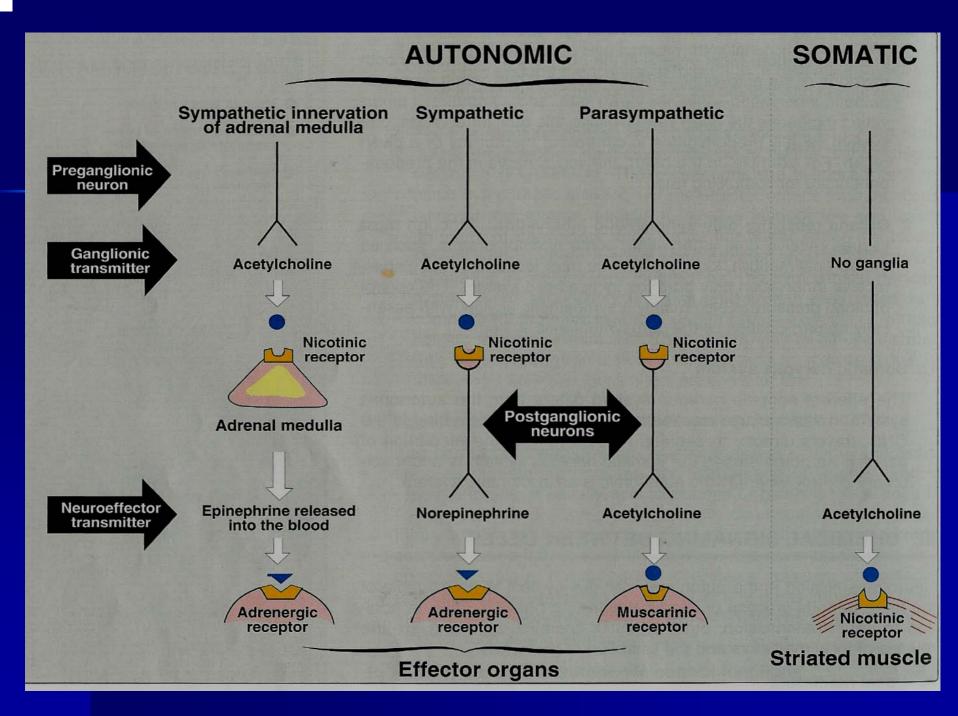
The peripheral nervous system is somatic .N.S and the autonomic nerves system.

What are the differences between the somatic and the autonomic N.S?

Somatic N.S

Control skeletal muscles

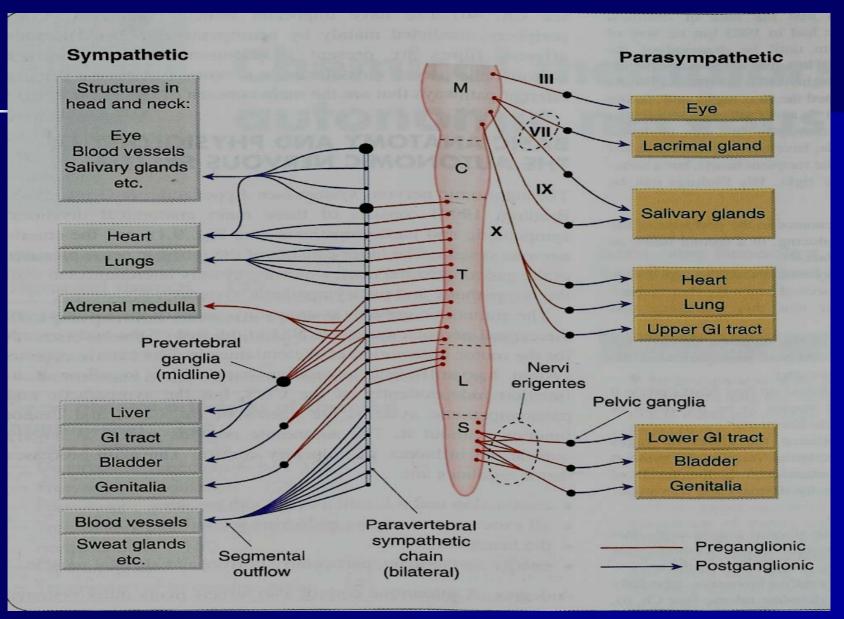

Voluntary

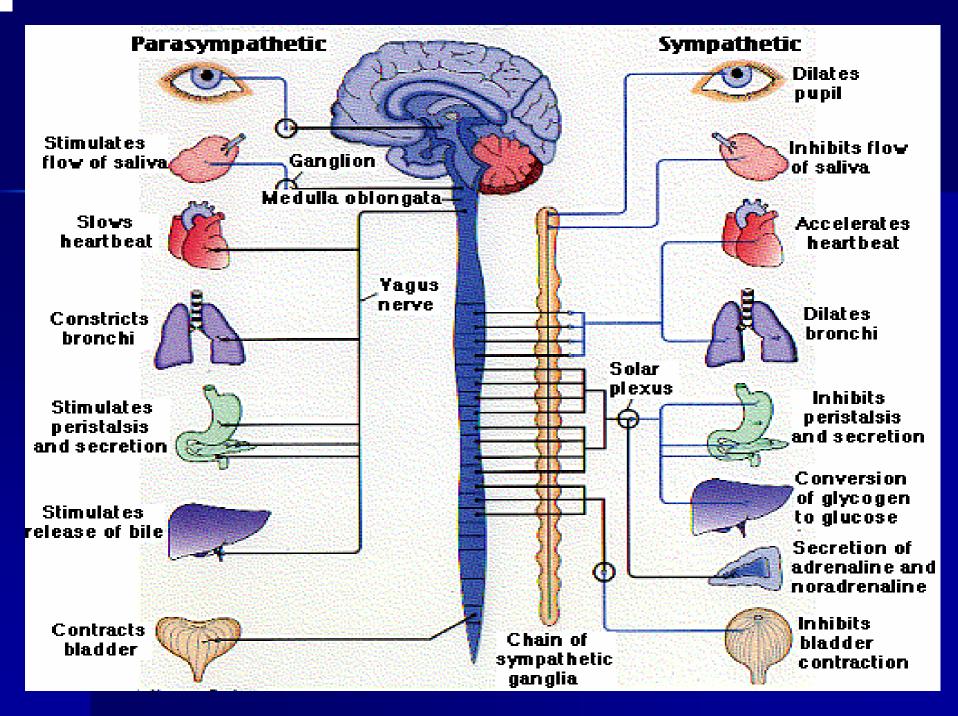

Somatic nerve is one fiber

Autonomic N.S

Control smooth muscles of viscera, blood vessels, exocrine glands & cardiac muscles
Involuntary

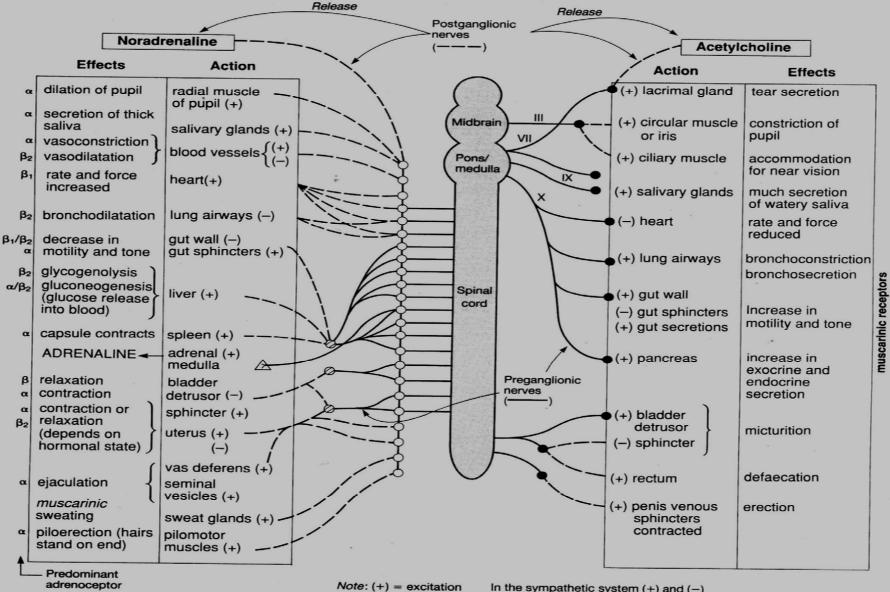
Autonomic nerves have two neurons


AUTONOMIC NERVOUS SYSTEM consists of : 1. The sympathetic or thoracolumbar outflow.


2. The parasympathetic or craniosacral outflow.

Anatomy Of The Autonomic Nervous System

	Sympathetic	Parasympathetic
t	Thoracolumbar ganglionic fibers leave CNS hrough first thoracic to cond lumbar segments of spinal nerves	Craniosacral Preganglionic fibers leave the CNS through cranial nerves (3,7,9,10) and sacral segments of spinal cord
Preganglionic is shorter than postganglionic		Preganglionic is longer than postganglionic
Ganglia form chain near the spinal cord.		Ganglia present near organs innervated or nearly embedded in it
	Ergotropic system. (Fight & flight)	Trophotropic system. (rest & digest)


ANATOMY OF THE AUTONOMIC NERVOUS SYSTEM

SYMPATHETIC SYSTEM

PARASYMPATHETIC SYSTEM

(-) = inhibition

generally correspond to a-and B-receptors, respectively

Innervation by autonomic nervous system

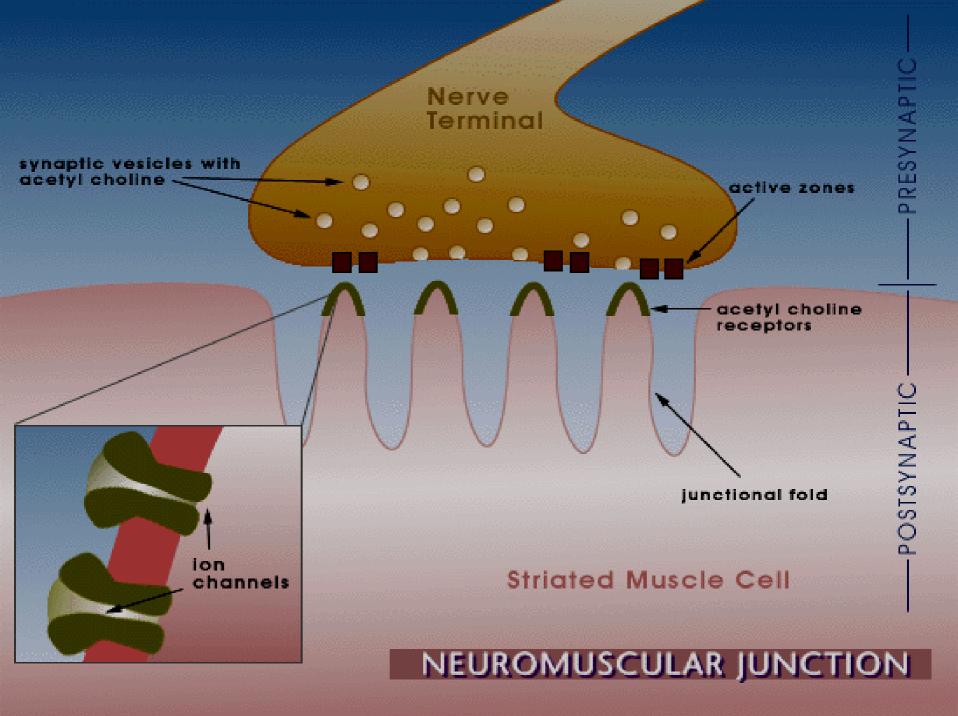
Most organs are dually innervated by both sympathetic and parasympathetic system BUT one system usually predominates

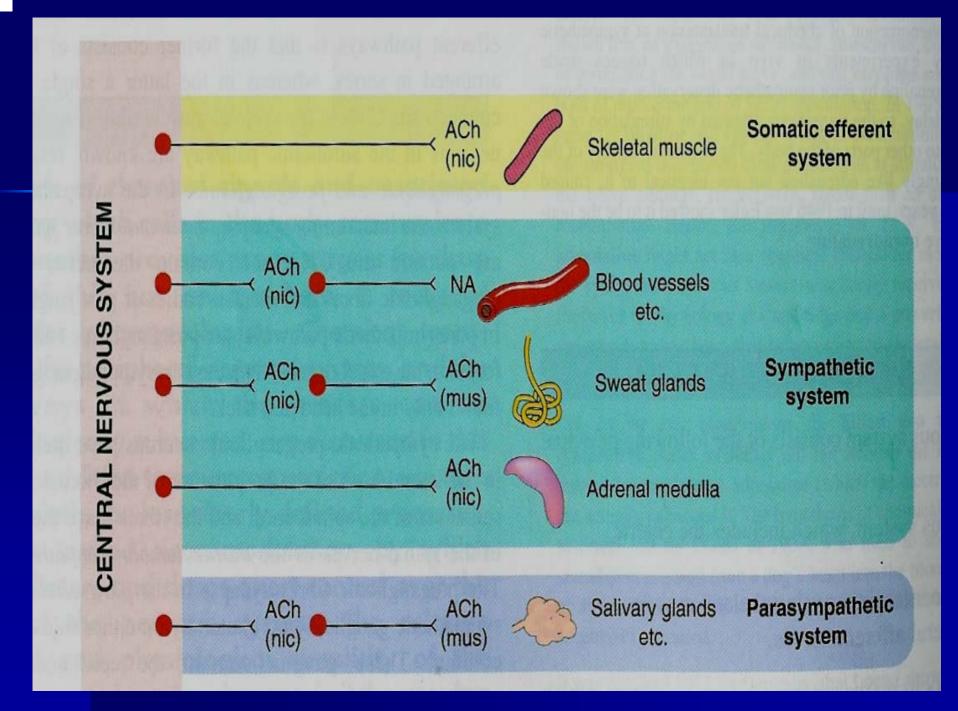
Some organs as <u>adrenal medulla, kidney,</u> <u>blood vessels, sweat glands and pilomotor</u> <u>muscles receive only sympathetic system.</u>

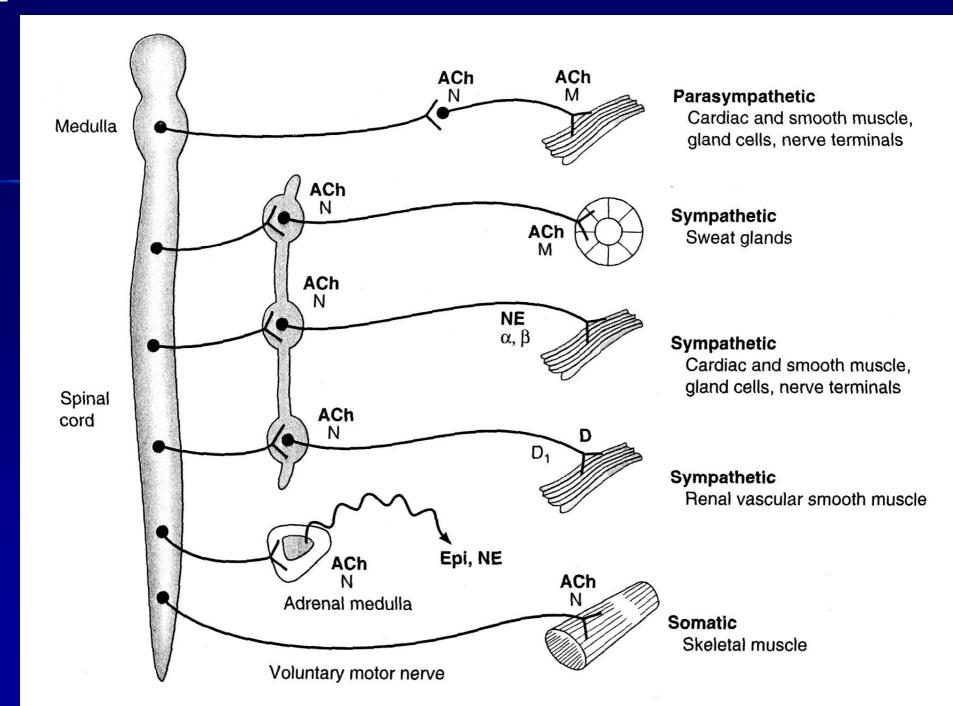
Neurotransmitters

Chemical substances responsible for communication between nerve cells and between nerve cells and effector organs.

Neurotransmitter in sympathetic system is noradrenaline and nerves are adrenergic


Neurotransmitter in parasympathetic system is acetylcholine and nerves are cholinergic


Cholinergic nervous system


1. Neuromuscular junction.

2. Autonomic ganglia: all preganglionic nerve fibers of both sympathetic and parasymp nerves.

- 3. Parasympathetic postganglionic fibers.
- 4. Sympathetic postganglionic fibers to sweat glands.
- 5. Preganglionic sympathetic nerve to Adrenal medulla.

Consists of :

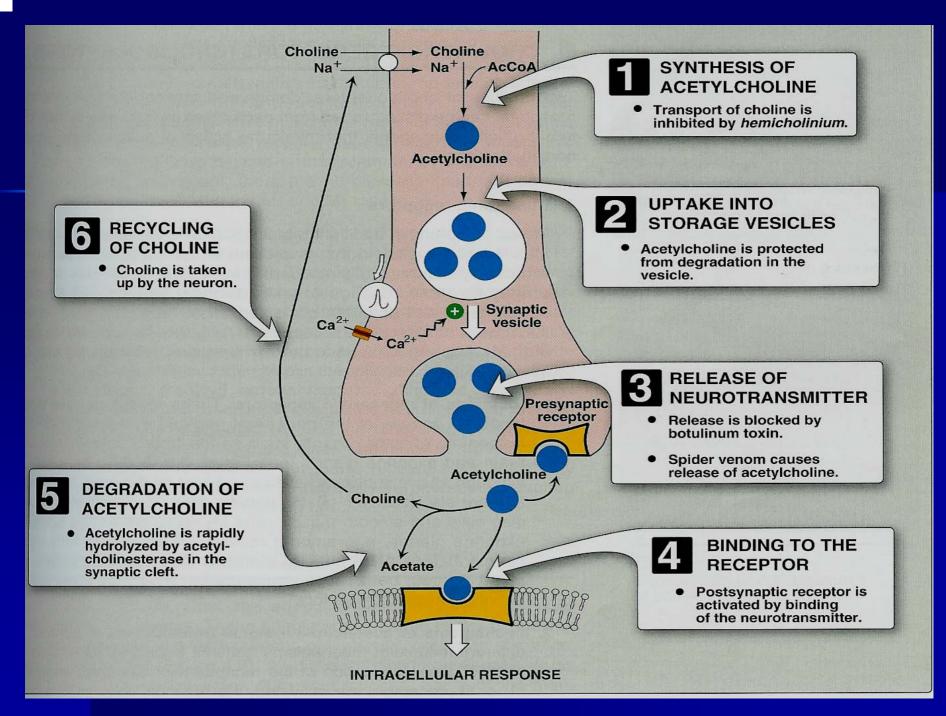
- Synthesis of acetylcholine (Ach)
- Storage
- Release
- Binding to receptors
- Metabolism (fate).
- Recycling of the choline

- 1) **Synthesis**
 - Choline is transported into cytoplasm of the cholinergic presynaptic nerve terminals by carrier
- $\square Choline + acetyl CoA \rightarrow ACh + CoA$

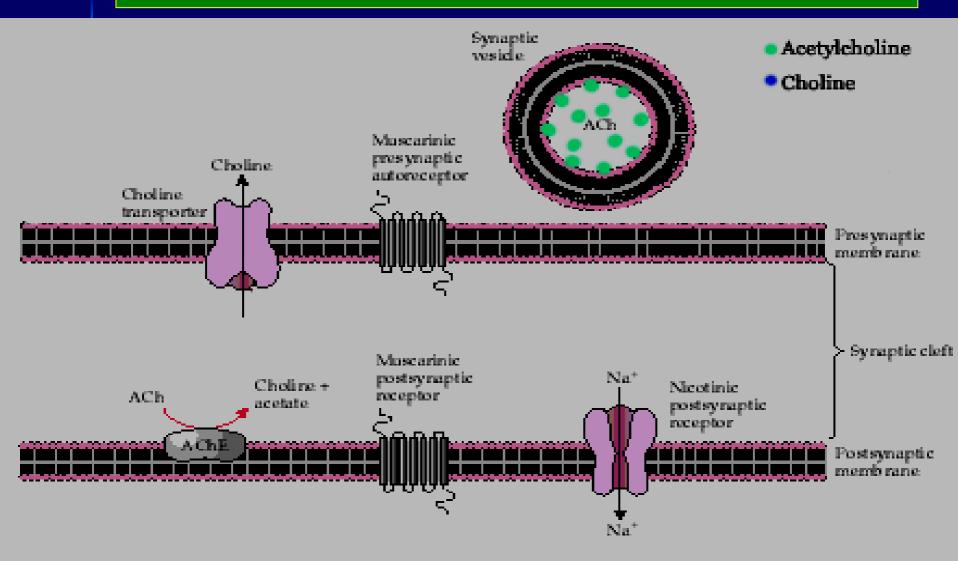
(Inhibition by hemicholinium, triethylcholine)

2) Storage

ACh is transported into the storage vesicles by active transport system (Inhibition by vesamicol)


3) Release

ACh is released upon nerve stimulation \rightarrow influx of calcium \rightarrow exocytosis \rightarrow Ach release into synaptic cleft


(Inhibition by Magnesium, aminoglcosides)

3) Metabolism (FATE)

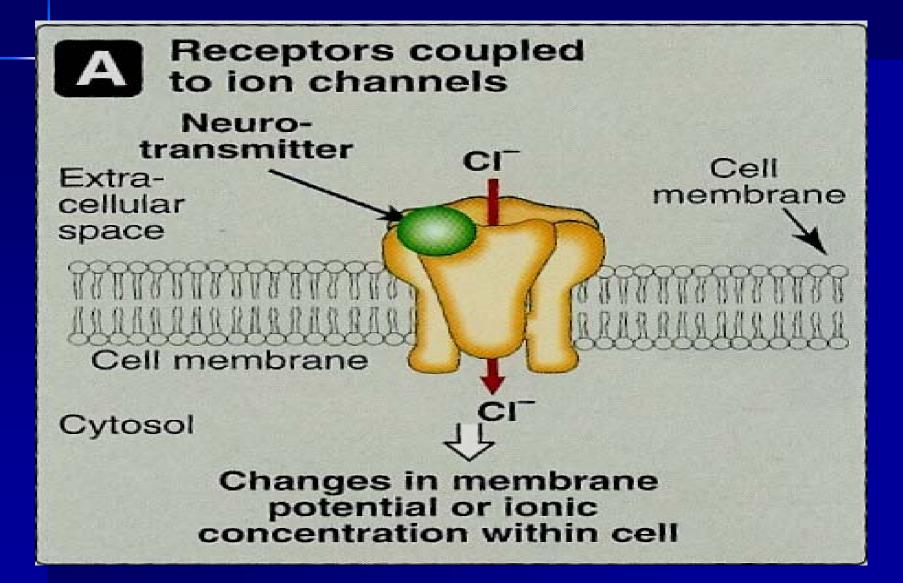
acetylcholinesterase

Cholinergic nervous system Cholinergic transmission

Trι	e Cholinesterase	Pseudocholinesterase
	Specific	Non specific
Ch	olinergic fibers, RBC, CSF	Plasma, liver, skin, intestine
Slo	ow turnover, 120 day	Rapid turnover
	ACh, methacholine	Succinylcholine, Butyrylcholine

Cholinergic receptors

1. Nicotinic (Central cholinergic) receptors.


2. Muscarinic (Peripheral cholinergic) receptors.

Nicotinic receptors ion channels-linked receptors (Fast)

Types

- 1. Neuronal (NN).
- 2. Muscular (NM).

Nicotinic receptors

Locations of nicotinic receptors
1. Autonomic ganglia NN (neuronal type).
2. Adrenal medulla.
3. CNS

3.Neuromuscular junction (NM)

Cholinergic receptors Muscarinic receptors

■ M1—M5

- M1,M3,M5 are excitatory .
- M2,M4 are inhibitory .
- C.N.S has all receptors .
- Periphery i.e. G.I.T , U.T .etc have M2&M3.
- **The heart mainly M2**.

Muscarinic receptors (Peripheral cholinergic receptors) **G-protein linked receptors** Five subclasses ; M₁ M₅ M₁,M₃,M₅ are excitatory in function. M_2, M_4 are inhibitory in function. **Locations** in all effector organs innervated by cholinergic fibers as Smooth muscles (GIT, urinary tract,

- bronchial muscles).
- Exocrine glands, C.N.S

M2 (Cardiac)

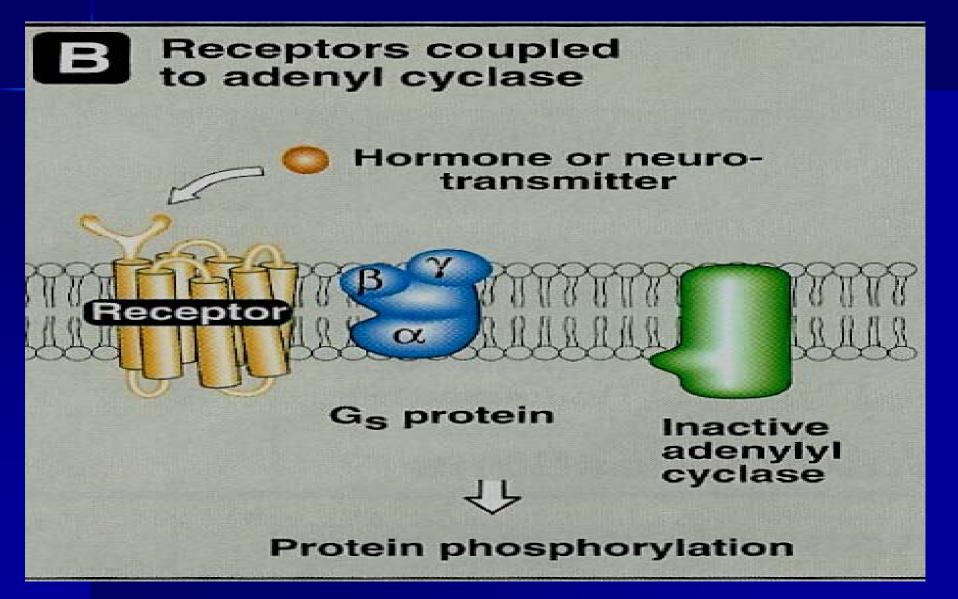
Heart – Presynaptic cholinergic fibers

Inhibitory

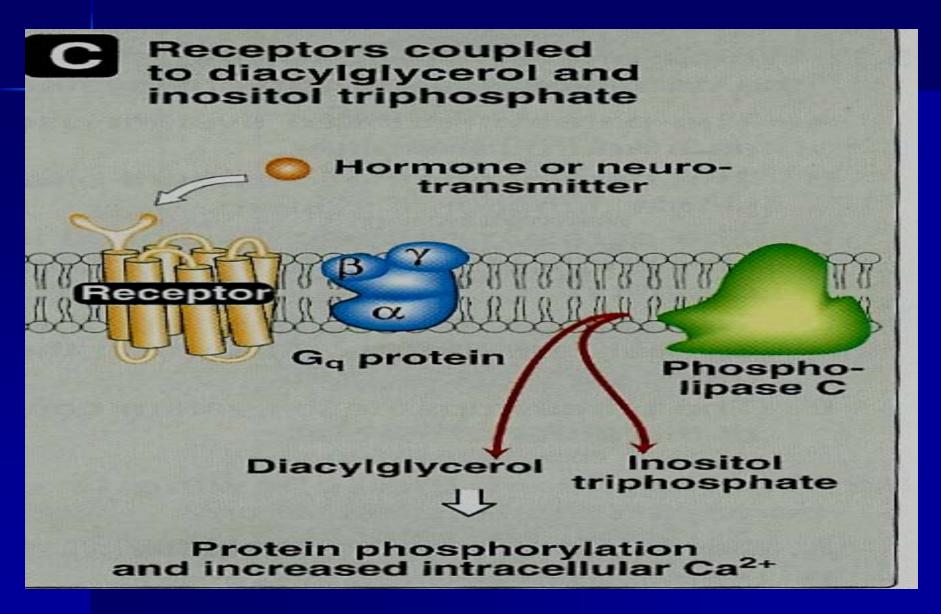
Inhibition of adenyl cyclase (LCAMP)

Activation of K channels

Cardiac inhibition Presynaptic inhibition


M3 (Glandular) Exocrine glands - smooth muscles Vascular endothelium Excitatory

- Secretion
- Smooth muscle contraction
- Vasodilatation (via NO)


Activation of phospholipase C---increased IP3.

Decentor	Locations	Effects
Receptor	LUCATIONS	Ellects
M1 (Neural)	CNS	CNS excitation
Excitatory	Autonomic	Gastric acid secretion
	ganglia	Activation of phospholipase C 1
	gastric parietal cells	IP3 &DAG → ↑ Ca
M2	Heart	Cardiac inhibition
(Cardiac)	Presynaptic	Presynaptic inhibition
Inhibitory	cholinergic fibers	 Inhibition of adenyl cyclase (↓ cAMP)
		Opening of K channels
M3	Exocrine glands	Secretion
(Glandular)	Smooth muscles	Smooth muscle contraction
Excitatory	Vascular	Vasodilatation (via NO)
	endothelium	 Activation of phospholipase C 1P3 & DAG.

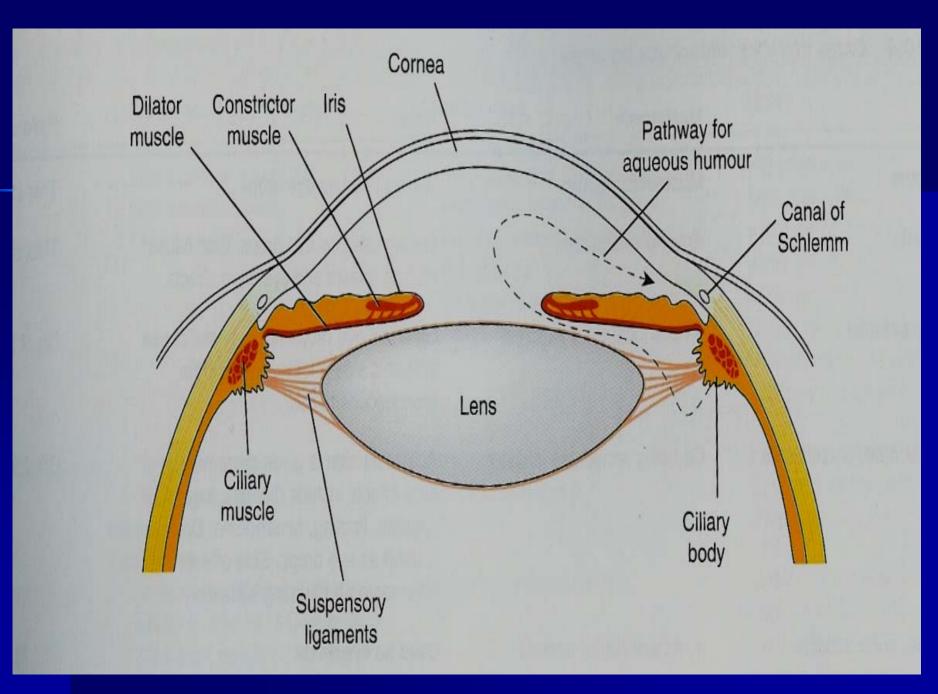
Muscarinic Receptors

Excitatory Muscarinic receptors

What are actions of cholinergic system activation?

- Nicotinic actions
 Muscarininc actions
- * CNS

NICOTINIC ACTIONS OF ACH Skeletal muscles:


■ stimulation → muscle fasciculation (twitching).

- High conc → persistent depolarization & paralysis.
- Ganglia: stimulation of sympathetic and parasympathetic ganglia
- Adrenal medulla release of catecholamines (A & NA).

Muscarinic actions of Ach

		Effe	ect of	
	Sympathetic Activity		Parasympathetic Activity	
Organ	Action ¹	Receptor ²	Action	Receptor ²
Eye				
Iris Radial muscle	Contracts			
Circular muscle	Contracts	α ₁	Contracts	 М _з
Ciliary muscle	[Relaxes]	β	Contracts	M ₃
Heart				
Sinoatrial node	Accelerates	β1,β2	Decelerates	M ₂
Ectopic pacemakers	Accelerates	β,β		2
Contractility	Increases	$\substack{\beta_1,\beta_2\\\beta_1,\beta_2\\\beta_1,\beta_2}$	Decreases (atria)	M ₂
Blood vessels				
Skin, splanchnic vessels	Contracts	α		
Skeletal muscle vessels	Relaxes	β ₂		
	[Contracts]	α		
Endothalium	Relaxes	M ³		::;
Endothelium			Releases EDRF	M ₃ ⁴
Bronchiolar smooth muscle	Relaxes	β ₂	Contracts	M ₃
Gastrointestinal tract				
Smooth muscle				1. NOT 1. NO.
Walls	Relaxes	α_2 , ⁵ β_2	Contracts	M ₃
Sphincters Secretion	Contracts	α1	Relaxes	M ₃
Myenteric plexus	• • • •		Increases Activates	M ₃
			Activates	M ₁
Genitourinary smooth muscle				
Bladder wall Sphincter	Relaxes Contracts	β ₂	Contracts	M ₃
Uterus, pregnant	Relaxes	α_1	Relaxes	M ₃
oterus, pregnant	Contracts	β_2	Contracts	
Penis, seminal vesicles	Ejaculation	α	Erection	M ₃ M
Skin				
Pilomotor smooth muscle	Contracts	α		
Sweat glands				
Thermoregulatory	Increases	м		
Apocrine (stress)	Increases	α		
Metabolic functions				
Liver	Gluconeogenesis	β_2, α		
	Glycogenolysis	β_2, α		
Fat cells	Lipolysis	β_3^2 β_1		
Kidney	Renin release	β ₁		
Autonomic nerve endings]			
Sympathetic Parasympothetic			Decreases NE release	M^6
Parasympathetic	Decreases ACh	α	· · · · ·	
	release			

	Parasympathetic Activity		
Organ	Action	Receptor ²	
Eye Iris Radial muscle Circular muscle Ciliary muscle	Contracts Contracts	M ₃ M ₃	
Heart Sinoatrial node Ectopic pacemakers Contractility	Decelerates Decreases (atria)	M ₂ M ₂	
Blood vessels Skin, splanchnic vessels Skeletal muscle vessels Endothelium	Releases EDRF	· · · · · · · · · ·	
Bronchiolar smooth muscle	Contracts	M ₃ ⁴ M ₃	
Gastrointestinal tract Smooth muscle Walls Sphincters Secretion Myenteric plexus	Contracts Relaxes Increases Activates	M ₃ M ₃ M ₃ M ₁	
Genitourinary smooth muscle Bladder wall Sphincter Uterus, pregnant Penis, seminal vesicles	Contracts Relaxes Contracts Erection	M ₃ M ₃ M ₃ M	
Skin Pilomotor smooth muscle Sweat glands Thermoregulatory Apocrine (stress)			
Metabolic functions Liver Liver Fat cells Kidney			
Autonomic nerve endings Sympathetic Parasympathetic	Decreases NE release	М ⁶	

CNS actions **Nicotinic actions:** -ADH secretion from hypothalamus – Inhibition of motor fibers **Muscarinic actions:** -ACh is involved in memory and arousal

– Parkinsonism

Dementia of Alzheimer: loss of cholinergic neurons.

Cholinomimetics = Parasympathomimetics These drugs produce actions similar to cholinergic system stimulation

Types

1. Direct cholinomimetics

Act by direct stimulation of nicotinic or muscarinic receptors.

2. Indirect cholinomimetics

They act indirectly by inhibiting acetylcholinesterase thus prevent the degradation of Ach.

Cholinomimetic drugs

Direct cholinomimetics

Naturally occurring alkaloids e.g. Pilocarpine

Choline esters

Acetylcholine Methacholine Carbachol

Bethanechol

Indirect cholinomimetics (anticholinesterases)

Reversible indirect cholinomimetics
 Edrophonium
 Ambenonium
 Physostigmine
 Pyridostigmine
 Neostigmine

 Irreversible indirect cholinomimetics Ecothiophate Isoflurophate

Direct cholinomimetics

Classification

Naturally occurring alkaloids e.g.
 Pilocarpine

Synthetic Choline esters

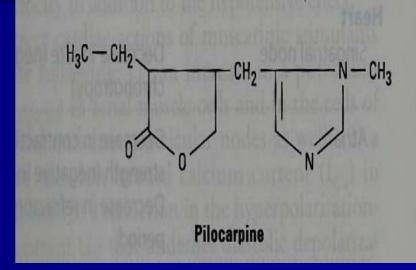
- Acetylcholine
- Methacholine
- Carbachol
- Bethanechol

Mechanism of action Muscarinic agonists

- Activation of phospholipase C → ↑ IP3 & DAG → contraction of smooth muscles
- Increase cGMP → NO release → relaxation
- Inhibition of adenyl cyclase (cAMP)
- Opening of K channels → Hyperpolarization
- **Nicotinic agonists**

Organ	Response
Eye Sphincter muscle of iris	Contraction (miosis)
Ciliary muscle	Contraction for near vision
Heart Sinoatrial node	Decrease in rate (negative chronotropy)
Atria	Decrease in contractile strength (negative inotropy). Decrease in refractory period.
Atrioventricular node	Decrease in conduction velocity (negative dro- motropy). Increase in refractory period.
Ventricles	Small decrease in contractile strength

Blood vessels Arteries	Dilation (via EDRF). Constriction (high-dose direct effect).		
Veins	Dilation (via EDRF). Constriction (high-dose direct effect).		
Lung Bronchial muscle	Contraction (bronchoconstrictor)		
Bronchial glands	Stimulation		
Gastrointestinal tract Motility	Increase		
Sphincters	Relaxation		
Secretion	Stimulation		
Urinary bladder Detrusor	Contraction		
Trigone and sphincter	Relaxation "		
Glands Sweat, salivary, lacrimal, nasopharyngeal	Secretion		

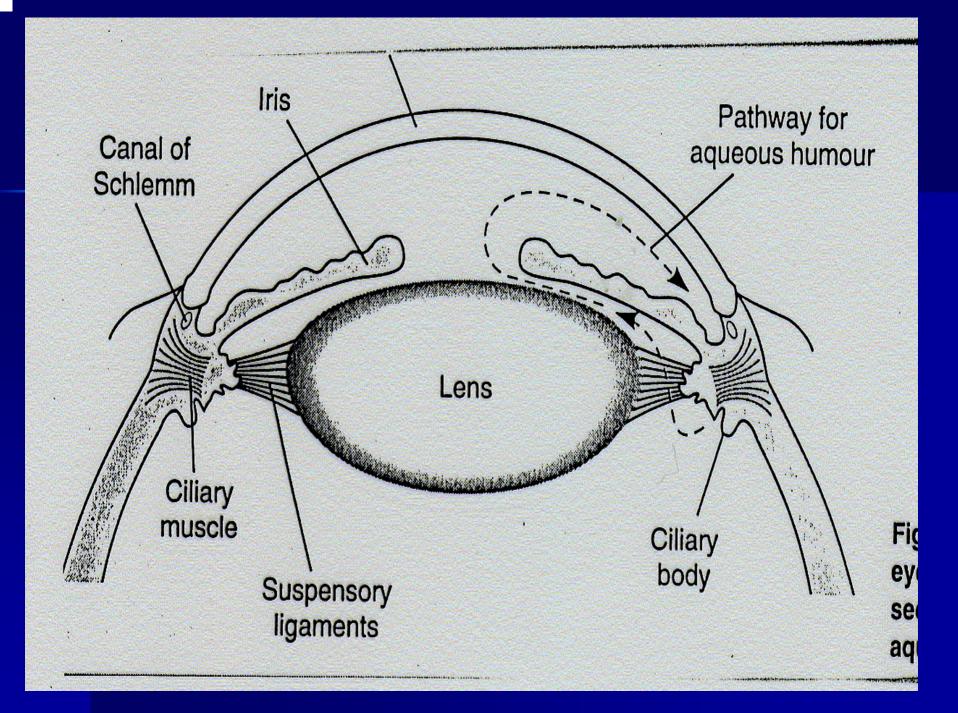

Direct Cholinomimetic drugs 1. Naturally occurring alkaloids Pilocarpine

Chemistry

Tertiary amine - basic

Pharmacokinetics

- It is well absorbed orally
- Can cross BBB.
- Good distribution
- Not degraded by cholinesterases
- Long duration of action
- Excreted unchanged in the urine
- (acidification \uparrow excretion).

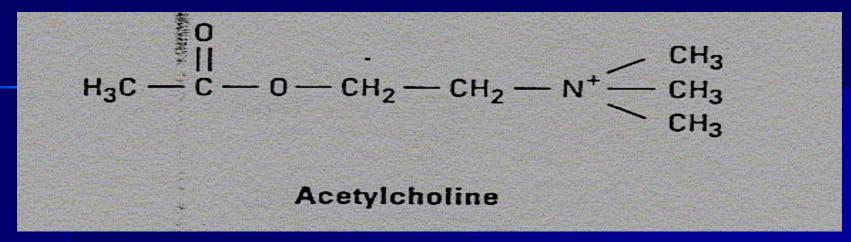


Pharmacodynamics

- 1. Direct muscarinic agonist mainly on eye & secretions (saliva, tears, sweat).
- 2. No nicotinic action.
- 3. CNS actions

Uses

- 1. Glaucoma
- 2. Xerostomia (dry mouth).
- 3. To counteract mydriatics after fundus examination.

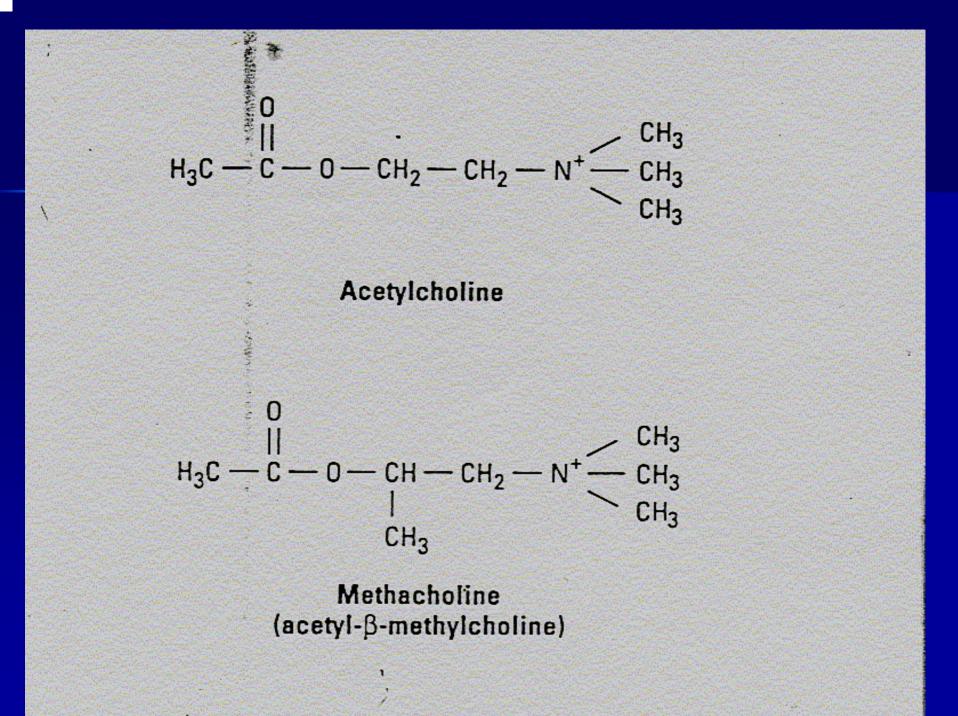


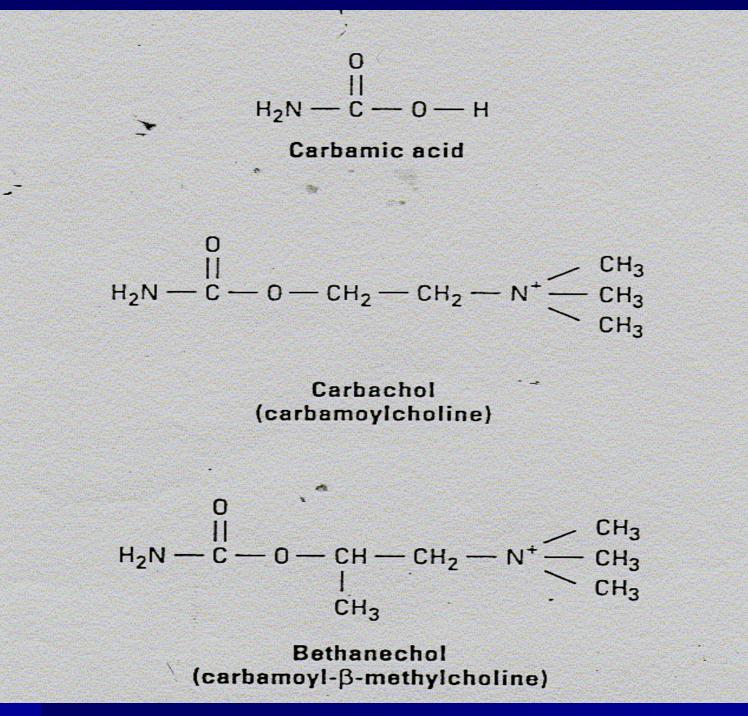
Direct cholinomimetics

Acetylcholine & Synthetic Choline esters

- Acetylcholine
- Methacholine
- Carbachol
- Bethanechol

Acetylcholine (Ach)




- Quaternary ammonium compound
 Not absorbed orally (given by injection)
- Muscarinic and nicotinic agonist
- Not used due to
 - non selectivity Why?
 - short duration of action Why?

Synthetic choline esters

Chemistry

- Quaternary ammonium compounds
- Methacholine
- Carbachol
- Bethanechol

Kinetics

- 1. Polar
- 2. Poor distribution
- 3. can not cross BBB
- 4. Metabolized by cholinesterase (variable degree).
- Pharmacodynamics
 1. Muscarinic agonists
 Methacholine Bethanechol
 2. Muscarinic and Nicotinic agonists
 Acetylcholine Carbachol

What are the differences between Ach and synthetic choline esters ?

Synthetic choline esters are:

- 1. More specific.
- 2. Less or not metabolized by acetylcholinesterase.
- 3. Have longer duration of action
- 4. Never given I.V. or I.M.

Methacholine (Muscarinic agonist)

- 1. Orally-SC.
- 2. Metabolized by true cholinesterase.
- 3. Longer duration of action
- 4. More specific
- 5. Muscarinic actions on CVS than GIT& UT
- 6. No nicotinic action.
- 7. Used for
 - Peripheral vascular disease
 - Paroxysmal atrial tachycardia.

Carbachol (nicotinic & Muscarinic)

- 1. Not a substrate to acetylcholinesterase.
- 2. Longer duration of action than Ach
- 3. Has both muscarinic & nicotinic actions.
- 4. Muscarinic actions mainly on <u>Eye, GIT,</u> <u>urinary tract.</u>
- 5. Used for
 - **Glaucoma**
 - Urinary retention & paralytic ileus

 Bethanechol (Muscarinic agonist)
 Similar to carbachol But it has no effect on nicotinic receptors
 Orally- S.C.
 More Preferred than carbachol for paralytic ileus & urinary retention.

	ACh	Methacholine	Carbachol	Bethanechol
Absorption	NOT	Irregular	Complete	Complete
Metabolism	True (+++) Pseudo	True + only	NOT metabolized (Resistant)	NOT metabolized (Resistant)
Duration	Very short	Longer (+)	Longer (++)	Longer (++)
Administ.	I.V.	Oral, S.C.	Oral, S.C., eye drops	Oral, S.C.

	ACh	Methacholine	Carbachol	Bethanechol
Muscarinic	+++	+++	+++	+++
Selectivity	NOT	More on CVS than GIT and urinary bladder	Eye, GIT Urinary bladder	GIT, Urinary bladder
Nicotinic	+++	NO	+++	NO
Uses	NO	 Paroxysmal atrial tachycardia Peripheral vascular disease 	 Glaucoma Urinary retention Paralytic ileus 	 Urinary retention Paralytic ileus

Uses

- 1. Glaucoma (pilocarpine).
- 2. Paralytic ileus (bethanechol, carbachol).
- 3. Urinary retention (bethanechol, carbachol).

Contraindications

- 1. Bronchial asthma.
- 2. Peptic ulcer.
- 3. Angina pectoris

