Drug Combination

Two or more drugs are taken at the same time (Drug-drug interaction).

TYPES of Drug-drug interaction

- 1. Harmful
- 2. Useful (multidrugs treatment of T.B.)

Clinically important D-D interactions:

- 1. Patients with impaired liver or kidney functions.
- 2. Elderly patients.
- 3. Drugs known a enzyme inducers and inhibitors.
- 4. Drugs with small therapeutic index (digoxin-Lithium).
- 5. Drugs used for prolonged time and precise plasma levels (lithium-antiepileptics).

Drug Combination

Where

- 1. Outside the body.
- 2. Inside the body.

Drug interaction outside the body.

■ Soluble insulin and protamine zinc → delayed absorption

incompatibility

Diazepam or phenytoin + Infusion fluid (saline) → Precipitation.

Carbenicillin + Gentamycin → Inactive gentamycin

Thiopental + Suxamethonium → Precipitation

Drug INTERACTION INSIDE THE BODY

Mechanisms

Pharmacokinetic interactions

- Absorption
- Distribution
- Metabolism
- Elimination

Pharmacodynamics Interactions

- Synergism
 - Potentiation
 - Addition
- Antagonism

I. Interactions During Absorption

A. Direct chemical interaction

- Iron and tetracyclines form complex.
- Antacids: Aluminium or magnesium chelate with tetracyclines ↓ bioavailability of tetracycline (2 hr apart).
- Cholestyramine interfere with absorption of:
 - Digoxin
 - Warfarin.
 - Thyroxine

(B) Alteration of GIT Motility

- Purgatives ↓ absorption
- Antidepressants & anticholinergic drugs e.g. Atropine ↓ gastric emptying & delay absorption.
- Prokinetics e.g. Metoclopramide ↑ gastric emptying and absorption.

(C) Alteration in GIT Flora broad spectrum antibiotics potentiates anticoagulants → ↓ bacterial synthesis of Vit K.

(D) Absorption from other sites

Local anesthetic (lidocaine) + Adrenaline delay in absorption $\rightarrow \uparrow$ duration of action

II. Distribution

A) Displacement from plasma protein binding sites.

Sulphonamide + Bilirubin → Kernicterus

B) Displacement from other tissue binding sites.

Quinidine + digoxin → more digoxin → toxicity

III. Biotransformation

A) Enzyme Induction.

Rifampin + Contraceptives →

Failure of conception

Barbiturates + Warfarin →

↓ Anticoagulant effect

B) Enzyme Inhibition.

Cimetidine → potentiates effects of Warfarin, theophylline.

IV. Interaction During Excretion a) Interference with active transport.

Primary Drug	Competing Drug	Result
Penicillin	Probenicid	↑ Penicillin Level
Salicylates	Probenicid	Salicylate toxicity
Indomethacin	Probenicid	Indomethocin toxicity

Pharmacodynamic Interactions

DRUG SYNERGISM.

DRUG ANTAGONISM.

Synergism

When the therapeutic effect of one drug is enhanced by another drug.

types:

- Addition.
- Potentiation.

Addition

- When the effect of two drugs having similar action are additives
- the net effect of two drugs used together is equal to the sum of the individual drug effect.

$$1 + 1 = 2$$

Thiazide diuretics + Beta blocker have an additive antihypertensive action.

Potentiation

When the net effect of two drugs used together is greater than the sum of the individual drug effects.

$$1+1>2 \text{ or } 1+0>2$$

- when one drug increases the action of other drug e.g. sulphamethoxazole + trimethoprim
 - \rightarrow cotrimoxazole (bactericidal) 1 + 1 > 2
- or when drug has no effect as own but increases the effect other drugs (1 + 0 > 2)

L-dopa and carbidopa.

Antagonism

The effect of one drug is decreased or abolished by the administration of another one.

- Physiological antagonism.
- Chemical antagonism.
- > Pharmacological antagonism.