Indirect cholinomimetics

Indirect acting cholinomimetic drugs What students should know:

- Indirect acting cholinomimetics
 - Classification
 - Mechanism of action
 - **Kinetics**
 - Dynamics
 - Uses
 - Adverse effects & contraindications.

Indirect cholinomimetics (anticholinesterases)

Mechanism of action:

inhibit acetylcholinesterase thus increase the Ach concentration at the cholinergic receptors (both nicotinic and muscarinic).

Indirect cholinomimetics Degradation of Ach by acetyl cholinesterase:

- 1. Ach binds to enzyme's active site and is hydrolyzed→ choline + acetylated enzyme (binding).
- 2. acetylated enzyme bond is broken by hydration→ cholinesterase enzyme + acetic acid (Hydration).
- 3. Anticholinesterases replace Ach → accumulation of Ach

$$H_3C \stackrel{\cdot}{-}C - O - CH_2 - CH_2 - N^+ \stackrel{\cdot}{-} CH_3$$

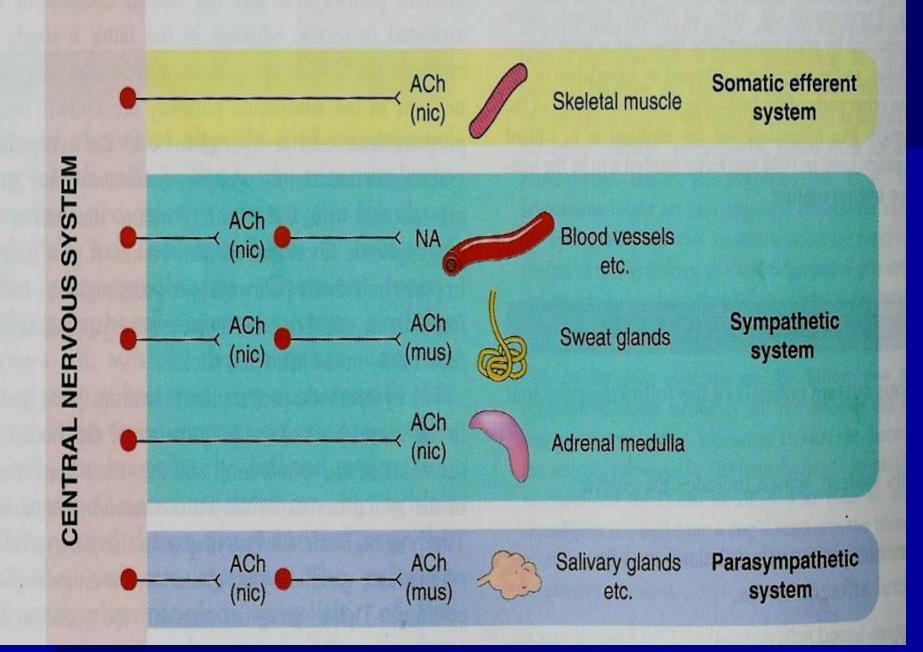
$$CH_3 - CH_3$$

$$CH_3$$
Acetylcholine

$$HO \xrightarrow{+} N \stackrel{CH_3}{=} C_2H_5$$

$$CH_3$$

$$Edrophonium$$


Pharmacological effects of anticholinesterases

- 1. Nicotinic actions
- 2. Muscarinic actions
- 3. Actions on CNS:

Excitation, convulsion, respiratory failure, coma

Sites of Ach release

- 1. Neuromuscular junction.
- 2. Autonomic ganglia: all preganglionic nerve fibers of both sympathetic and parasymp nerves.
- 3. Parasympathetic postganglionic fibers.
- 4. Sympathetic postganglionic fibers to sweat glands.
- 5. Preganglionic sympathetic nerve to Adrenal medulla.

NICOTINIC ACTIONS OF ACH

Skeletal muscles:

- stimulation → muscle fasciculation (twitching).
- High conc → persistent depolarization & paralysis.
- Ganglia: stimulation of sympathetic and parasympathetic ganglia
- Adrenal medulla release of catecholamines (A & NA).

Muscarinic actions

Organ	Response	
Eye Sphincter muscle of iris	Contraction (miosis)	
Ciliary muscle	Contraction for near vision	
Heart Sinoatrial node	Decrease in rate (negative chronotropy)	
Atria	Decrease in contractile strength (negative inotropy). Decrease in refractory period.	
Atrioventricular node	Decrease in conduction velocity (negative dromotropy). Increase in refractory period.	
Ventricles	Small decrease in contractile strength	

Blood vessels Arteries	Dilation (via EDRF). Constriction (high-dose direct effect).		
Veins	Dilation (via EDRF). Constriction (high-dose direct effect).		
Lung Bronchial muscle	Contraction (bronchoconstrictor)		
Bronchial glands	Stimulation		
Gastrointestinal tract Motility	Increase		
Sphincters	Relaxation		
Secretion	Stimulation		
Urinary bladder Detrusor	Contraction		
Trigone and sphincter	Relaxation *		
Glands Sweat, salivary, lacrimal, nasopharyngeal	Secretion		

Classification of Anticholinesterases

- I- Reversible indirect cholinomimetics
- Edrophonium (Quaternary alcohol)
- Carbamates (esters)
 - Physostigmine
 - Pyridostigmine
 - Neostigmine
 - Ambenonium

II. Irreversible indirect cholinomimetics

Organophosphorous compounds (esters)

- **-** Ecothiophate
- Isoflurophate

Indirect Cholinomimetics Edrophonium

Simple alcohol

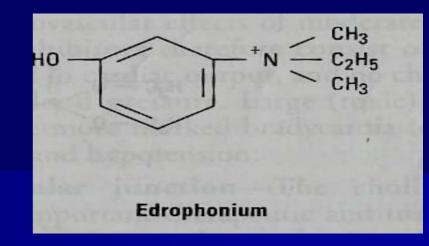
Reversible anticholinesterase

Not substrate for enzyme

attach mainly to anionic site.

Pharmacokinetics

Polar

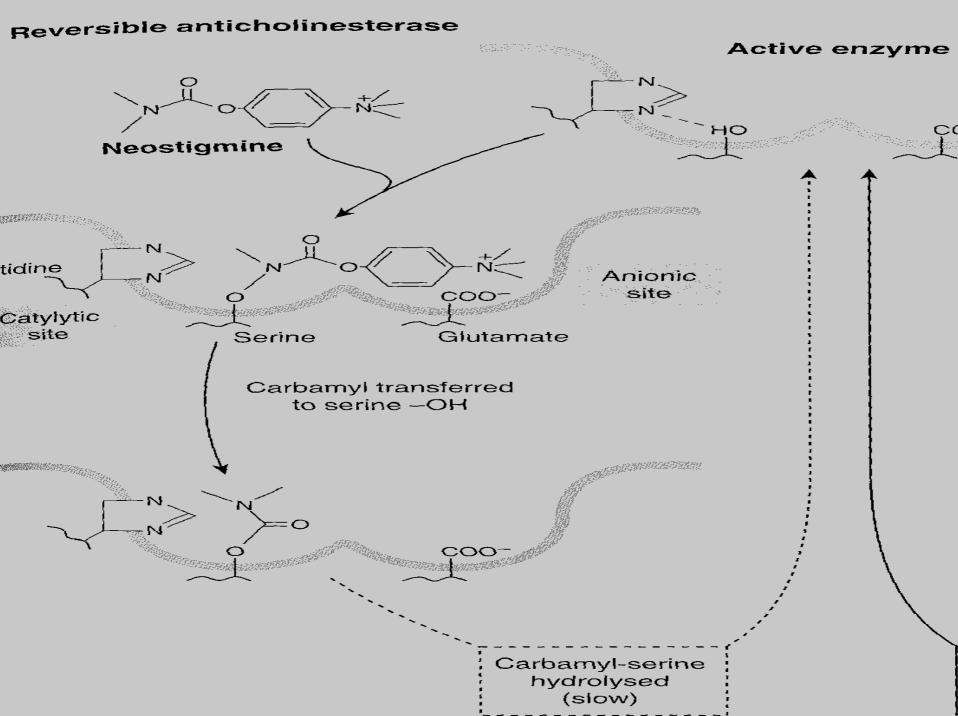

NOT absorbed orally (Should be given by injection)

NOT hydrolyzed by cholinesterases

Excreted unchanged in the urine

USES

Diagnosis of myasthenia gravis



Anticholinesterases

Carbamates

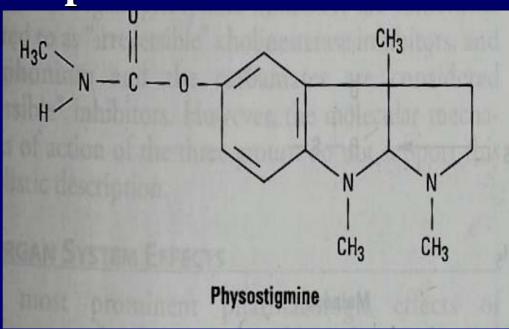
Mechanism of action:

- 1. Attach at both sites of the cholinesterase enzyme.
- 2. Hydrolyzed at slower rate than Ach.
- 3. Substrate for true cholinesterase enzyme and non specific esterases.
- 4. longer half life, 4-8 hr
- 5. All are polar EXCEPT Physostigmine.

Physostigmine

Tertiary ammonium compound

Pharmacokinetics


Non polar

Good lipid solubility

Good oral absorption

Good BBB penetration

Hydrolyzed by cholinesterases (True & Pseudo).

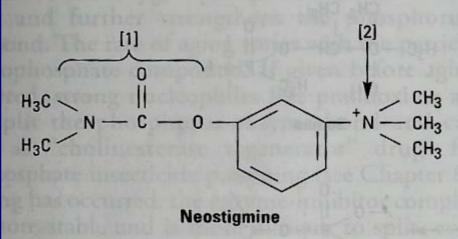
Pharmacodynamics

- Attach at both sites of the enzyme
- **■** Intermediate duration of action
- Indirect action (reversible anticholinesterase)
- Has muscarinic (see table of Ach) & nicotinic actions
- CNS stimulant action
- No direct action on NMJ

USES

- Glaucoma
- To counteract the effect of mydriatics
- Atropine intoxication (I.V.)

Neostigmine


Reversible anticholinesterase

Quaternary ammonium comp.

Pharmacokinetics

Polar compound Poor lipid solubility

Can be used orally

NO BBB penetration (No CNS effect)

Intermediate duration of action

Hydrolyzed by cholinesterases (True & Pseudo)

Pharmacodynamics

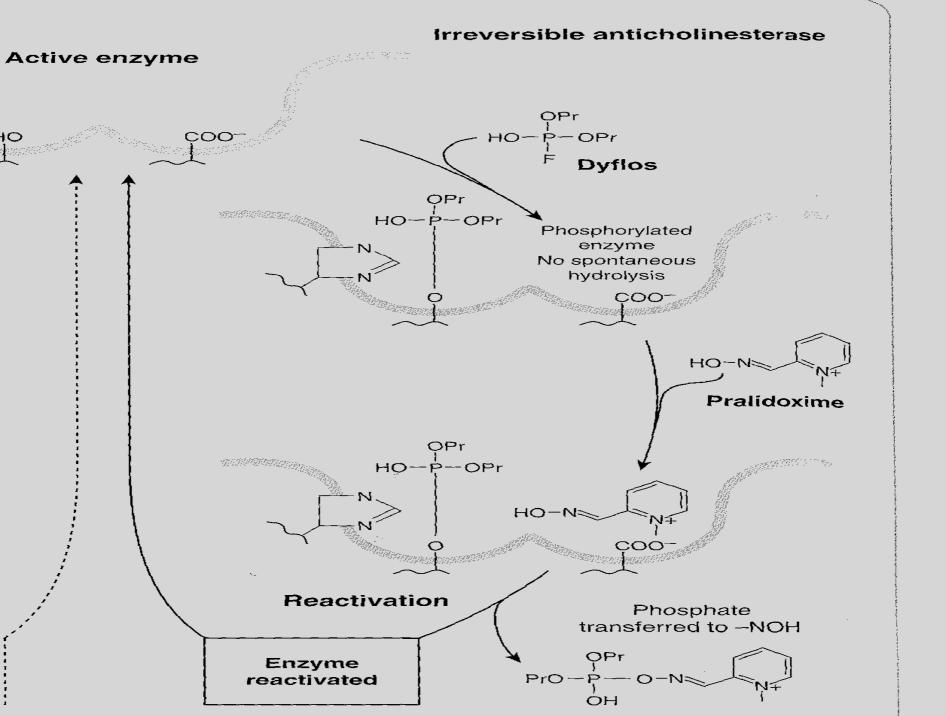
- Indirect action.
- Has muscarinic & nicotinic actions
- (More prominent on GIT & urinary tract than CVS).
- Direct action on NMJ

USES

- Treatment of myasthenia gravis (+ atropine)
- Paralytic ileus & Urinary retention
- Curare intoxication

Ambenonium & Pyridostigmine

- reversible anticholinesterase
- Similar to neostigmine
- Treatment of myasthenia gravis


Indirect Cholinomimetics (Organophosphorous compounds)

Ecothiophate

Isoflurophate (DFP)

Mechanism

- Indirectly by inhibition of cholinesterase
- Binds to esteratic site of cholinesterase forming covalent bond (the phosphorous atom).
- Long duration of action
- Aging make bond extremely stable
- All are highly lipid soluble except ecothiophate
- Used for glaucoma.

Pharmacological effects of organophosphorous

- 1. Muscarinic actions (see table of Ach).
- 2. Nicotinic actions
- Ganglia
- NMJ

Therapeutic dose ----- Increase action of Ach, contraction

Toxic dose------Muscle twitching & paralysis

3. CNS Excitation, convulsion, respiratory failure, coma

Organophosphorous compounds toxicity

- Sever bradycardia, hypotension.
- bronchospasm.
- Increased GIT motility \rightarrow cramps & diarrhea.
- CNS effects → convulsion, coma and respiratory failure.
- Twitching of skeletal muscles →
 depolarization block → muscle weakness.

Treatment of organophosphate toxicity

- Prevent further absorption
- +Support respiration
- Cholinesterase reactivators
- -Atropine (to block Muscarinic & Central actions).

Cholinesterase reactivators (Oximes)

Pralidoxime (PAM)

- accelerate the hydrolytic regeneration of cholinesterase enzyme.
- They reactivate recently inhibited enzymes before aging.

Uses

■ I.V. \rightarrow over 15-30 min for organophosphate intoxication.

New cholinergic Drugs Cevimeline

- Direct acting cholinomimetics
- It is given orally.
- -Increased salivation.
- -Used for treatment of dry mouth symptom associated with Sjogren's syndrome.

Anticholinesterase drugs.

- Donepezil
- Tacrine
- Given orally.
- Treatment of dementia of Alzheimer's disease.

Indirect Cholinomimetic

Edrophonium	Very Short 5-15min	Diagnosis of Myasthenia. Supraventricular tachycardia
Neostigmine	Short 0.5-2hr	Myasthenia gravis treatment Paralytic ileus Urinary retention curare toxicity
Physostigmine	Short 0.5-2hr	Glaucoma atropine toxicity
Pyridostigmine	Short 3-6	Myasthenia gravis treatment
Ambenonium	Short 4-8	Myasthenia gravis treatment
Ecothiophate	Long 100hr	Glaucoma.

Anticholinergic drugs

What students should know:

Student should be able to describe:

- Kinetics of muscarinic antagonists
- The effects of atropine on the major organ systems.
 - To list the clinical uses of muscarinic antagonists
 - To know adverse effects & contraindications.
 - To identify one antimuscarinic agent for each of the following special uses: mydriasis, cycloplegia, peptic ulcer & parkinsonism.

Anticholinergic Drugs(Cholinoreceptor blockers)

Nicotinic blockers.

Ganglionic blockers.

Neuromuscular blockers.

Muscarinic blockers (Parasympatholytics)

Classification of Antimuscarinics

1. Naturally occurring alkaloids.

Atropine – Hyoscine

2. Synthetic atropine substitutes.

Naturally occurring alkaloids

Atropine Hyoscine

Pharmacokinetics

- Tertiary amine ?
- Orally absorbed Cross BBB
- Metabolized in the liver, excreted in urine.
- Has short duration of action on most organs except eye.

Mechanism of action

 Reversible competitive blockade of all muscarinic receptors (NOT SELECTIVE).

Block muscarinic actions of Ach and other parasympathomimetics.

Pharmacological Effects CNS

- CNS sedative action
- Vagal nucleus (CIC):
 Initial bradycardia & Tachycardia.
- Antiemetic effect (block vomiting center).
- antiparkinsonian effect (block basal ganglia).
- Toxic dose:

Hyperthermia - excitement-hallucination.

Eye

- Passive mydriasis
 - paralysis of circular muscle.
- Cycloplegia (loss of accommodation) paralysis of ciliary muscle.
- Loss of light reflex.
- ↑ I.O.P # glaucoma.
- $-\downarrow$ Lacrimal secretion \rightarrow sandy eye.

CVS

1. Heart

- Initial bradycardia followed by tachycardia.
- AV conduction (+ ve dromotropic effect).

2. Blood vessels

- Therapeutic dose:
 ↓ Vasodilatation induced by cholinomimetics.
- Toxic dose: Cutaneous vasodilatation → (atropine flush).

Secretions

- ↓ Salivary secretion \rightarrow (Dry mouth).
- ↓ Sweating → Dry skin → Fever in infants and children.
- \downarrow Bronchial secretion → \uparrow Viscosity.
- ↓ Lacrimal secretion \rightarrow Sandy eye.
- ↓ Gastric secretion \rightarrow ↓ Gastric motility

GIT

- -Relaxation of smooth muscles (constipation).
- -↓ GIT motility → Antispasmodic effect.
- → Sphincter contractions.

Urinary Tract

- -Relaxation of the ureter smooth muscles.
- -Sphincter contraction.
- Urinary retention.

Bronchial Muscles

- Bronchial Relaxation
- ↓ Bronchial secretion \rightarrow ↑ viscosity

Uses

- 1. preanesthetic medication to:
 - ↓ Salivary & bronchial secretion.
 - Protect the heart from excessive vagal tone.
- 2. Antispasmodic in renal & intestinal colics.
- 3. Cholinomimetic or organophosphorous poisoning.
- 4. Bradycardia (Myocardial infarction).

Adverse effects & Toxicity

- Blurred vision Mydriasis
- + Tachycardia Atropine flush
- Urinary retention Constipation.
- Dryness of mouth, Sandy eye
- Malignant hyperthermia.
- Hallucination, Excitationa (Toxic dose).

Treatment

- Gastric lavage.
- Anticonvulsant.
- Cooling blanket.
- Antidote: Physostigmine (IV slowly).

Contraindications

- Glaucoma.
- Tachycardia.
- Prostate hypertrophy in old patients.
- Constipation & paralytic ileus.
- Children

Hyoscine (SCOPOLAMINE)

What is difference between atropine and hyoscine? Hyoscine

- Rapid onset of action
- Short duration
- Less mydriatic action (2-4 days).
- More CNS depressant action
 Sedation Inhibition of vomiting center.
- Has amnesic action.
- Less CVS effect

Uses

- Preanesthetic medication
- Antiemetic action (Motion sickness).

Synthetic Atropine Substitutes

Eye For Funduscopic Examination of the eye.

Atropine 7 days.

Homatropine 24 hours.

Cyclopentolate 12 hours.

Tropicamide 6 hours.

GIT

Peptic ulcer

Pirenzepine (Selective M1 blocker)

Antispasmodic

Hyoscine butyl bromide

Oxyphenonium.

Propantheline.

Glycopyrrolate.

Parkinsonism

- Benztropine.
- Trihexphenidyl.

Bronchial Asthma

Ipratropium bromide

- Quaternary compound.
- Taken by inhalation (bronchodilator).
- Little effect on viscosity.

USES of antimuscarinics

- AS mydriatics.
- + Bronchial asthma.
- Antispasmodic for intestinal and renal colics
- Traveller 's diarrhea
- Peptic ulcer
- Antiparkinsonian.
- Antiemetic, motion sickness (Hyoscine).
- Pre-anesthetic medication.
- Cholinomimetics intoxication

Direct cholinomimetic drugs

ACh	
Methacholine	
Carbachol	Paralytic ileus Urinary retention Glaucoma
Bethanechol	Paralytic ileus Urinary retention
Pilocarpine	Glaucoma
Cevimeline	Sjogren's syndrome.

Indirect cholinomimetic drugs (Anticholinesterases)

Donepezil

Tacrine

Edrophonium	Diagnosis of Myasthenia gravis. Supraventricular tachycardia
Neostigmine	Myasthenia gravis treatment, Paralyti ileus Urinary retention

	ileus Urinary retention
Physostigmine	Glaucoma atropine toxicity

	-
Physostigmine	Glaucoma atropine toxicity
Ambenonium	Myasthenia gravis treatment

i ilysostigiillic	Ciddoonid
	atropine toxicity
Ambenonium Pyridostigmine	Myasthenia gravis treatment

	att opine toxicity
Ambenonium	Myasthenia gravis treatment
Pyridostigmine	
Contleto de la cata	Clausana

Ambenonium Pyridostigmine	Myasthenia gravis treatment
Ecothiophate Isofluorophate	Glaucoma.

Alzheimer disease

Antimuscarinic drugs

Atropine	Preanesthetic medication - Antispasmodic
Hyoscine	Motion sickness - Preanesthetic medication Antispasmodic
Pirenzepine	Peptic ulcer
Ipratropium	Asthma
Benztropine	Parkinsonism
Dicyclomine Oxyphenonium	Antispasmodics
Tropicamide Cyclopentolate Homatropine	Fundus examination

