

Calcium Homeostasis

Amr S. Moustafa, M.D., Ph.D.

Ass. Prof. & Consultant Clinical Biochemistry & Molecular Biology College of Medicine and Obesity Research Center King Saud University

Objectives:

- Physiological importance of calcium
- Distribution and forms of calcium
- Regulation of blood level of calcium
- Measurement of calcium level
- Clinical problems: Hypo- and hyper-calcemia

Calcium: Physiological importance

- > Neuromuscular excitability
- Blood coagulation
- > Mineralization of bones
- > Release of hormones & neurotransmitters
- Intracellular actions of some hormones

Distribution and Forms of Calcium

- > One Kg of calcium in human body
- > 99% in bone (mainly, hydroxyapatite crystals)
- 1% in blood and ECF
 - 45% Free, ionized form
 - 40% Bound to protein (mostly albumin)
 - 15% Bound to HCO₃⁻, PO₄⁻, citrate, lactate

Distribution and Forms of Calcium

Effects of pH on forms of blood calcium

Acidosis favors ionized form & alkalosis enhances protein binding

Numbness and tingling in hyperventilation

Avoid use of tourniquet for collection of blood samples for measurement of calcium

Importance of direct measurement of ionized calcium Vs (calculated) or (total calcium) in acutely ill subjects

Regulation of Blood Level of Calcium

- Parathyroid hormone (PTH)
- Calcitriol: Active form of vitamin D
- ? Calcitonin

(1) Parathyroid Hormone (PTH)

- > Secreted by parathyroid glands
- Molecular mass: 9.5 kDa
- **Full biologic activity: NT 1/3 (PTH**₁₋₃₄)

Acts via membrane-bound receptor (G-protein stimulation and increase intracellular cAMP)

Target organs: Bone, kidney, intestine

Parathyroid Hormone (PTH)

- Stimulus: Decrease of ionized Ca²⁺
- **> Effects:**

Bone: [†]Bone resorption Activated osteoclasts break down bone and releases calcium into ECF

Kidneys: Tubular reabsorption of calcium Renal production of active vitamin D Phosphate excretion (Phosphaturic effect)

Intestine: Intestinal absorption of calcium (Indirect) (Bone: Largest effect; Kidney: Rapid changes)

Parathyroid Hormone (PTH) Discussion of the second second

Signal Transduction: G-protein Coupled Membrane Receptor

Actions of cAMP

¹Phosphodiesterase

(2) Calcitriol

Intestinal absorption of calcium (& phosphate)

- Enhances the effects of PTH on bone and kidney to blood calcium level
- Acts via intracellular receptors of steroid/thyroid superfamily
- Hormone/receptor complex binds to HRE of DNA & gene expression of important proteins for calcium homeostasis, e.g., CBP

Steroid/Thyroid Superfamily: Steroid Hormones Thyroid Hormones Calcitriol (Vitamin D) Retinoic acid (Vitamin A)

Calcitriol and Calcium Homeostasis

Calcium Homeostasis: PTH & Calcitriol

Response to low blood calcium

(3) Calcitonin

Secretion: Medullary cells of thyroid gland Peptide hormone (32 amino acids)

Stimulus: Increase of blood level of ionized Ca²⁺

Effects: Inhibits the actions of both PTH & calcitriol in hypercalcemic state

Physiological role in adult humans: Uncertain

Measurement of Calcium

Types: Total calcium Ionized Ca²⁺: direct *(ISE) and ? calculated Corrected calcium (adjusted to albumin)

Specimen:

Avoid use of tourniquet Serum or Lithium-heparin plasma Urine: Acidified with HCl (1 ml/100 ml urine) *ISE: Ion selective electrode

Reference Ranges:

 Serum total calcium:

 Child (< 12 years):</td>
 2.20 – 2.7 mmol/L

 Adult:
 2.15 – 2.5

Serum ionized calcium: Child (< 12 years): 1.20 – 1.38 mmol/L Adult: 1.16 – 1.32

