

Prokaryotic Gene Expression and Recombinant Protein Production

Amr S. Moustafa, M.D.; Ph.D.

Assistant Prof. & Consultant, Medical Biochemistry Dept. College of Medicine, KSU amrsm@hotmail.com

Revision: Restriction Enzymes

- Endonucleases
- Recognition sequences
- Sticky Vs Blunt ends
- Reaction conditions
- Electrophoretic detection
- > Applications

Restriction Endonucleases

Origin: Bacterial enzymes

Binomial nomenclature: *Eco* RI; *Hae* III

Restriction Endonucleases

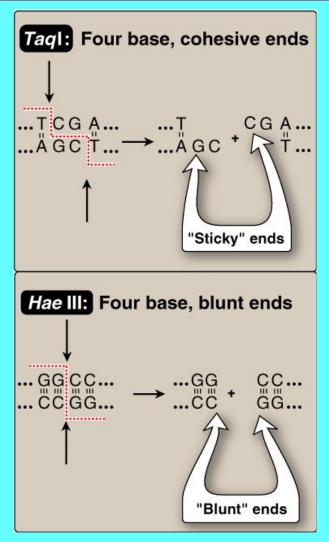
Restriction sites: dsDNA, palindromic sequence 4- or 6- base pairs Sticky or blunt ends

Restriction fragments:

Detected by agarose gel electrophoresis Size as compared to DNA size markers

DNA Recognition Sequence: A Palindrome

A Palindrome


5'

When read in the $5' \longrightarrow 3'$ direction, the sequence on the "top" strand is identical to that of the "bottom"strand.

-GAATTC- 3'

3' -CTTAAG- 5'

Restriction Endonucleases: Sticky Vs Blunt ends

Restriction Endonucleases: Reaction Conditions

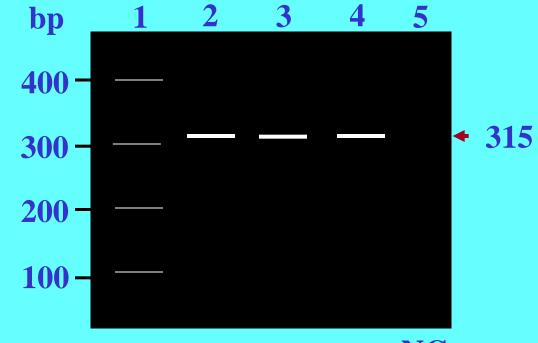
- Ionic strength: 100-150 mM
- pH: < 8.0
- Divalent cation: Mg²⁺
- Glycerol contents: < 5% (V/V)
- Units of enzyme: to amount of DNA
- Temperature: 37 °C

Restriction Endonucleases: Reaction Conditions - 2

• DNA Digestion with multiple enzymes

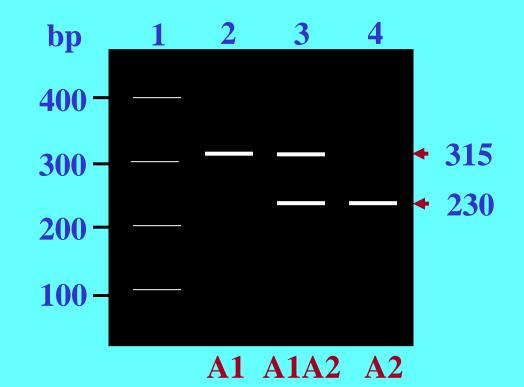
• Inactivation of the enzymes: Heat inactivation EDTA inactivation

Restriction Endonucleases: Electrophoretic Detection


DNA sequence (restriction site)

Restriction enzyme

DNA Restriction fragments


Detection by DNA gel electrophoresis

PCR of SA Gene

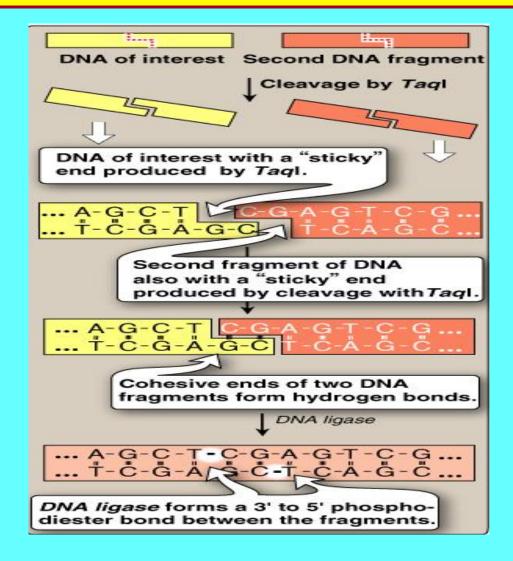
SA Genotypes

Restriction Endonucleases: Applications

- Production of Recombinant DNA & Cloning
- Production of DNA & cDNA Libraries
- Analysis of DNA: e.g., Southern blotting
- Detection of mutations: e.g., Diagnosis of sickle cell anemia by RFLPs

Objectives: DNA Cloning and Recombinant Proteins

- Production of Recombinant DNA
- Bacterial transformation
- Screening for target clone
- Prokaryotic gene expression protocol
- Uses of recombinant proteins


DNA Cloning

Recombinant DNA Construct: Target DNA plus Vector

Living (replicating) cells

Amplified target DNA

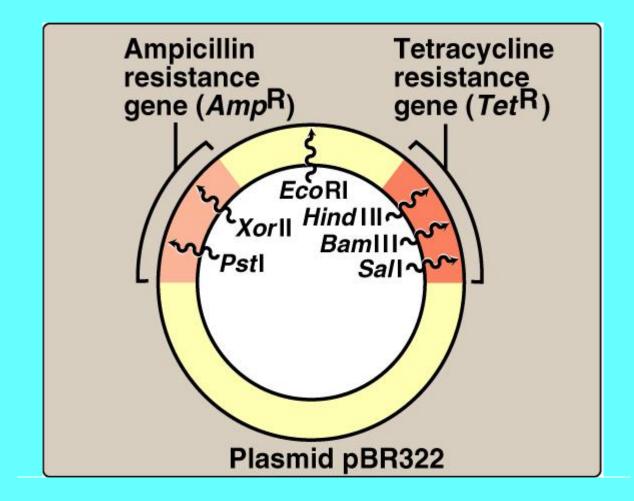
Production of Recombinant DNA

Recombinant DNA - 2

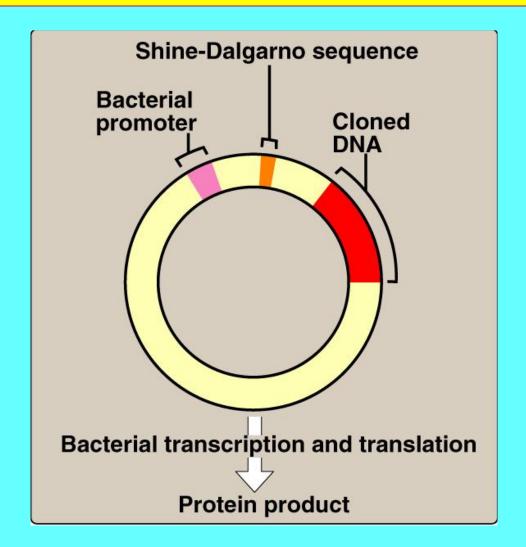
Target DNA sequence

- DNA
- cDNA
- Synthetic DNA

- Plasmids
- Others: Bacteriophage, Cosmids, BACs, YACs, Retroviruses


Plasmid Vector

- Common features:
 - Origin of replication (ori)
 - Selectable marker
 - Cloning site(s)


>Additional elements (Expression vectors):

- Transcriptional promotor, inducible
- Translational control sequence
 - ATG start codon
 - Stop codons
- Coding sequence for fusion protein

Plasmid Vectors

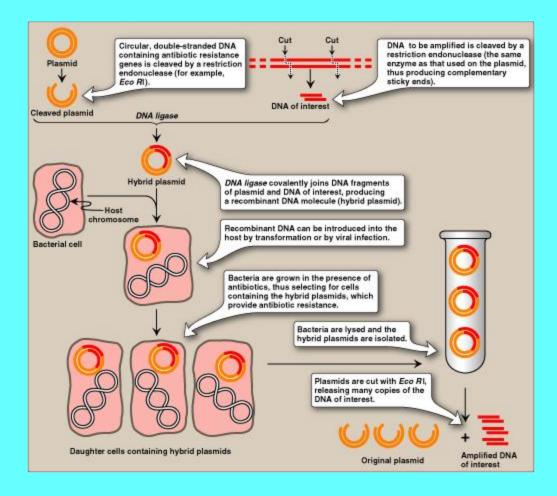
Plasmid Expression Vectors

Recombinant DNA Assembly

DNA modifying enzymes:

- Restriction endonucleases
- DNA polymerases
- DNA kinases
- Alkaline phosphatases
- DNA ligases

Synthetic linkers and adaptors


Bacterial Transformation

Introduction of foreign DNA into competent bacterial host

Chemical or electroporation

Screening for target bacterial clone

Summary for DNA Cloning

Protocol for DNA Cloning

- Assemble recombinant DNA construct
- > Prepare competent *E. coli* strain
- ➢ Transform *E. coli* strain
- Screen transformants for target clone
- Confirmation: Miniprep & restriction map

Prokaryotic Gene Expression

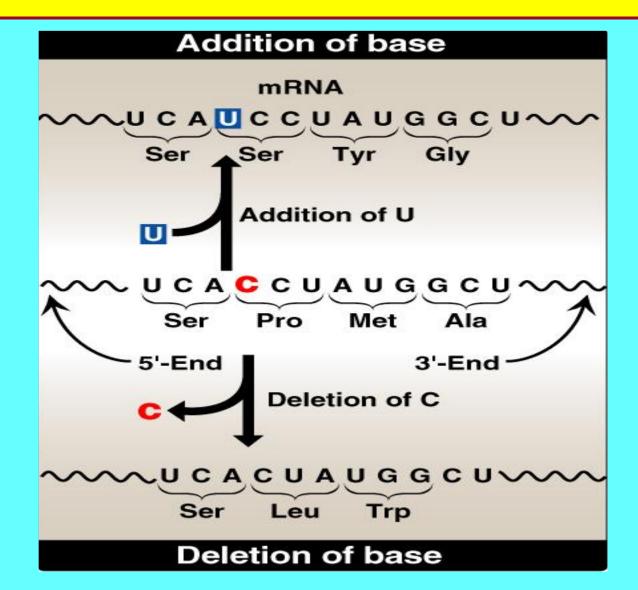
Definition:

Directed synthesis of gene-encoded protein in living bacterial cells

• Research:

Structure-function relationship Production of antibodies

Medical, pharmaceutical & industrial


Expression Construct: Assembly

DNA modifying enzymes

Synthetic linkers and adaptors

> In-frame ligation of insert & vector DNAs

The Open Reading Frame

E. coli Gene Expression - 1

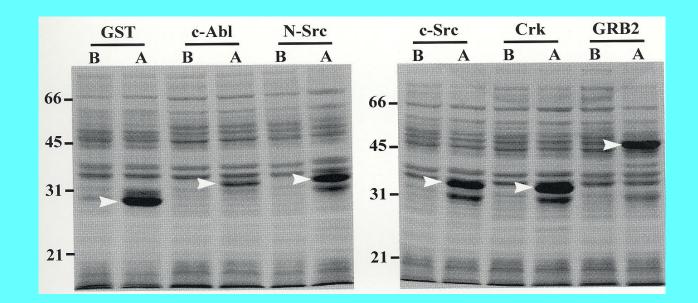
► Advantages:

- Relatively simple & achievable in short time
- Efficient: expressed protein ~30% of total cellular proteins
- Cheap
- Disadvantages
 - Euokaryotic proteins: not properly modified
 - Inclusion bodies
 - Toxic genes

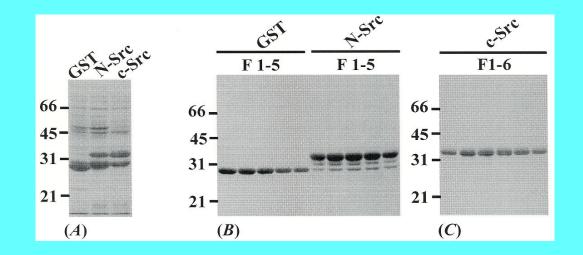
E. coli Gene Expression - 2

- Direct expression system
- **Fusion protein expression system**
- Secretory expression system

Fusion Protein Expression System


Fusion moiety: Highly-expressed

- Glutathione-S-transferase (GST)
- Histidine tag (His)


>Advantages:

- Good translation initiation
- Better stability of small proteins
- Built in purification
- Reliable & reproducible
- Limitations
 - Inclusion bodies

GST/SH3 domain-containing Fusion proteins: 1

GST/SH3 domain-containing Fusion Proteins: 2

Rate-Limiting Factors

Plasmid-related:

- Plasmid copy number
- Transcriptional efficiency
- Translational efficiency
- Host-related:
 - Genetic background
 - Growth requirement
 - Protease activity

Gene Expression Protocol

- Suitable *E. coli* expression system
- Assemble the expression construct
- **>** Transform a series of *E. coli*
- Screen transformants
- Confirmation: Target protein
- > Optimize the expression yield

Troubleshooting - 1

Low yield:

- Plasmid instability:
 - Alter growth conditions
 - Rec A⁻ E. coli strains
 - Freshly-transformed colony for expression

Stretch of rare codons:

- Replace with preferred codons
- Protein degradation:
 - Protease-deficient mutant strains
 - Use fusion or secretory systems

Troubleshooting - 2

Inclusion bodies:

- Alter growth & induction conditions:
 - Lower growth temperature
 - Use different media
 - Reduce induction time
 - Use another host strain

Conclusions

Successful Expression Results

- Visible band at the expected molecular weight
- Use of appropriate control(s)
- Functional, biochemical and immunological characterization of the recombinant protein

