ANTI ADRENERGIC DRUGS

ANTI ADRENERGIC (SYMPATHOLYTIC) DRUGS

Drugs block the actions of circulating catecholamine (EP & NE) on adrenergic receptors

 Also inhibit the effects of adrenergic nerve stimulation

Classification of Sympatholytic drugs

A. Alpha (α) Adrenoceptor Antagonists

B. Beta (β) Adrenoceptor Antagonists

C. Alpha (α) + Beta (β) Adrenoceptor
 Antagonists

A. Alpha Adrenoceptor Antagonists

Block alpha (α) adrenoceptors

Classification of α antagonists

1)Non-specific $\alpha_1 + \alpha_2$ antagonists Phentolamine & phenoxybenzamine Cont.

2) Specific α₁ antagonists Prazosin, doxazosin, terazosin, tamsulosin & alfuzosin

3) Specific α₂ antagonist
 Yohimbine & tolazoline

Reversible Dissociate

e.g. Phentolamine & prazosin

can not dissociate

Irreversible

e.g.Phenoxybenzamine

Pharmacological Effects

A) Cardiovascular Effects

- 1) Antagonism of α -receptors of arterioles & veins $\rightarrow \Psi PVR \rightarrow \Psi BP$
- Prevent pressor effect of usual doses of α-agonists → depressor effect; c/d epinephrine reversal

cont

3) Postural hypotension → posture is changed from sitting to upright position → sudden ↓ BP (pooling of blood in extremities due to gravity)

4) Reflex tachycardia usually by non-selective blockers cont.

B. Other Effects

- 1) Nasal congestion (dilatation of blood vessels of nasal mucosa)
- 2) Blocking of α₁ receptors of dilator pupillae muscles → Miosis+↓ intraocular pressure (phenox.)
- Blocking of α₁ receptors of trigone+sphinctor muscles → relaxation → ↑ urinary outflow (phenox.)

Detailed properties of specific agents

1)Non-specific $\alpha_1 + \alpha_2$ antagonist

A) Phentolamine Imidazoline-derivative

Pharmacodynamics: MOA Blocks both $\alpha_1 + \alpha_2$ -receptors Cont.

Effects Antagonism of α_1 -receptors (possibly α_2) of vascular sm.muscles → **♦ PVR → ♥** BP Cardiac stimulation in response to baroreflex mechanism Antagonism of presynaptic α₂-receptors →↑release of NE from sympathetic nerves →cardiac stimulation cont.

Inhibits response to serotonin; agonist of muscarinic, H₁ & H₂ histamine receptors

Pharmacokinetics:

- Limited absorption after oral intake, other properties are not well known
- Cont.

Clinical Use:

Pheochromocytoma & male erectile dysfunction

Ad.effects:

 Tachycardia, arrhythmias, myocardial ischemia, diarrhea, gastric acid production

B) Phenoxybenzamine

Pharmcodynamics MOA:

Irreversible (covalent) binding to αreceptors (↑ selective for α₁) → long duration (14-48 h) blockade

cont

Effects:

- Inhibits reuptake of NE by pre-synaptic nerve terminals
- Blocks H₁, ACh & 5-HT receptors
- ➢ Blocks catechol-induced vasoconstriction
 → ♥ BP during high sympathetic tone (upright position)

Pharmacokinetics of Phenoxybenzamine

- Usually given orally
- Absorbed after oral intake with low starting dose of 10-20 mg/d

Adverse effects

 Postural hypotension, tachycardia, nasal stiffness, inhibition of ejaculation, fatigue, sedation and nausea

2) Specific α₁ Antagonists

A) Prazosin

□ Piperazinyl quinazoline, highly selective for α_1 receptors, low affinity for α_2 (Ψ tachycardia)

MOA

■ Blocks α₁ → relaxation of arterial and venous sm.muscles

Cont.

PK:

Extensively metabolized by liver, 50% drug is available after oral administration

B) Terazosin

MOA

Reversible α_1 selective antagonist

Uses

Hypertension & benign prostatic hyperplasia (BPH)

PK

Bioavailability 1

Half life is 9-12 h

C) Doxazosin

MOA

Highly selective for α_1 receptors, low affinity for α_2

Uses

Hypertension & BPH

PK: moderate bioavailability, longer half life of ~ 22 h, extensively metabolized

D) Tamsulosin

- **MOA:** competitive α_1 antagonist, structurally d/f from others, greater selectivity for α_{1A} -sub type than α_{1B} **Uses:** \blacklozenge effective for BPH (α_{1A});
- **Uses:** \mathbf{T} effective for hypertension
- PK: very high bioavailability, long half life (9-15h)

E) Alfuzosin

Quinazoline derivative

Selective for α₁ Little effect on human BP

3) Specific α₂ Antagonists

A) Tolazoline

Similar to phentolamine, rarely used clinically for pulmonary hypertension in new borne

B) Yohimbine

Indole alkaloid; selective α₂ antagonist
 No clinical role; research drug

Ergot derivatives

Ergotamine,dihydroergotamineCausereversibleα-receptorblockade, no clinical effect

Clinical pharmacology of α-receptor blocking drugs

1)Pheochromocytoma

Tumor of adr.medulla; releases mix of EP, NE; patients have ¹BP, tachycardia,arrhythmia

Major clinical use of phenox. & phentolamine

Cont.

Phenoxybenzamine Used in

- a) Preoperative episode =oral dose of 10-20 mg/d → rincreased in several days
- b) Chronic treatment of inoperable or metastatic condition
- c) Phentolamine used to manage ↑BP

2) Hypertensive emergencies

\Box Limited use of α -antagonist, only Labetalol is used 3) Chronic hypertension Members of prazosin family are effective for mild to moderate systemic hypertension Major adv.effect is postural hypotension; dizziness

4) Peripheral vascular disease

Phentolamine,prazosin,phenoxyben zamine → Raynaud'sphenomen; excessive reversible vasospasm in peripheral circulation

5) Local vasoconstrictor excess

Phentolamine reverse intense local vasoconstriction caused by infiltration of α -agonists into subcutaneous tissues

6) Urinary obstruction

a) Partial reversal of sm muscle contraction in enlarged prostate & in bladder base b) Effect on cells in prostate & improve symptoms of BPH e.g. prazosin, doxazosin & terazosin useful for BPH + hypertensive patients Cont.

c) Tamsulosin effective for those BPH patients having postural hypotension

7) Erectile dysfunction e.g Phentolamine