#### Fertilization and implantation

Combination of female slides + last year slides





# Fertilization

- Is a complex sequence of coordinated molecular events
- Fertilisation normally occurs after 24 hours of ovulation
- Begins with a contact between sperm and ovum
- Ends up with intermingling of maternal and paternal chromosomes

### Site

- The usual site of fertilization is the lateral 1/3<sup>rd</sup> of the uterine tubes (ampulla)
- Fertilization may occur in other parts of uterine tubes or even <u>outside</u> the tube.
- Fertilization is a process that extends over a period of 4 to 6 hours.

## **Sperm Capacitation**

- Occurs in the female genital tract before fertilization
- Is stimulated by secretions in the vagina , uterus, and uterine tubes
- Results in capability of the sperm to pass through the corona radiata
- Involves removal of surface coatings and changes in plasma membrane (glycoprotein and seminal proteins)
- This stimulates acrosome reaction

#### Acrosome reaction

 Fusion of sperm's plasma membrane and external acrosomal membrane allows the acrosome contents to be released and facilitate fertilization



### Phases of Fertilization

- Passage of sperm through corona radiata
- Penetration of zona pellucida
- Fusion of the plasma membrane of the oocyte and sperm
- Completion of second meiotic division & formation of female pronucleus
- Formation of male pronucleus



- Passage of sperm through corona radiata.
   How ?
  - acrosomal enzymes
  - tubal mucosal enzymes
  - movement of sperm's tail
- Penetration of zona pellucida. How?
  - acrosomal enzymes (acrosin)
  - lysosomal enzymes from cortical granules
  - What is the zona reaction ?
  - changes in plasma membrane and zona pellucida that make them impermeable to other sperms

- Fusion of plasma membranes of the oocyte and sperm
  - Head and tail enter , plasma membrane no
- Completion of second meiotic division & formation of female pronucleus and second polar body
  - Nucleus of mature oocyte becomes the female pronucleus
- Formation of male pronucleus
- What is an ootid ? Ootid is the oocyte containing two haploid pronuclei



# **Phases of Fertilization**

#### 6. Zygote formation:

- pronuclei are fusing
- the ootid becomes a zygote
- zygote contains 46 chromosomes
- Chromosomes become arranged on a cleavage spindle in preparation for cleavage.





#### **Sex Determination**

• Father rather than mother whose gamete determines the sex of the embryo.

"فجعل منه الزوجين الذكر والأنثى"





## Cleavage of Zygote

- It is the repeated mitotic divisions of the zygote
- Rapid increase in the number of cells
- These smaller embryonic cells are called Blastomeres
- Normally occurs in the uterine tube
- Zygote divides first into 2 then 4 & 8 cells
- Zygote lies within the thick zona pellucida during cleavage

- Compaction:
  - » Changes in the shape and alignment of blastomeres to form a compact ball of cells
  - Permits greater cell- to- cell interaction
- Morula:
  - embryo with 12-32 bastomeres
  - zona prevents morula from contact with endometrium.

### Implantation

- As the morula enters the uterus a fluid filled space appears inside the morula called Blastocystic cavity
- This fluid separates the blastomeres into 2 parts:
- Thin & outer cell layer called *Trophoblast*
- Inner cell mass called Embryoblast

# **Blastocyst Formation**



- Blastocyst consist of:
  - Trophoblast (placenta)
  - Blastocystic cavity: a fluid-filled space
  - Inner cell mass (embryoblast)
- Zona pellucida gradually degenerates and disappears
- Hatched blastocyst begins increasing in size and derives nourishment from secretions of the uterine glands.





- Implantation begins by end of week one
- And end by end of week two
- Where ?
- endometrium of the uterus, superior in the body of the uterus

### Trophoblast

As soon the blastocyst attaches to the endometrium the **Trophoblast** differentiates into <u>2 layers:</u>

• Inner layer called <u>Cytotrophoblast</u>

• Outer layer called *Syncytiotrophoblast* 



- Trophoblast differentiates into:
  - Cytotophoblast: mononucleated layer of mitotaclly active cells that form new syncytiotrophoblast.
  - Syncytiotrophoblast:
    - —rapidly expanding, multinucleated protoplasmic mass with no cell boundaries
    - —secretes hCG + enzymes to allow invasion of endometrium by apoptosis.

- appears as a fluid-filled space in the embryoblast.
- Amnion forms by separating amnioblasts from epiblasts and encloses the amiotic cavity.
- Formation of embryonic disc , consists of 2 layers :
  - Epiblast : floor of amniotic cavity (coulmnar)
  - Hypoblast : roof of exocoelomic cavity (cuboidal)



#### Lacunae:

- provides nutrition to embryo
  filled with a mixture of:
- 1. maternal blood from ruptured endometrial capillaries
- 2. cellular debris from eroded uterine glands.



- 1. Primary umbilical vesicle formed by multiplying of hypoblasts that line blastocyst cavity.
- 2. Extraembryonic mesoderm formed & surrounds amnion & umbilical vesicle.
- Closing plug (fibrinous coagulum of blood) formed
- Embryo is completely embedded in the endometrium.



#### Day 11-12 Lacunar networks:

- formed by fusion
   of adjacent lacunae
- •filled with maternal blood and cellular debris



- Extraembryonic coelomic spaces appear within extraembryonic mesoderm and fuses to form extraembryonic coelom.
- embryonic coelom splits the extraembryonic mesoderm into 2 layers:
  - extraembryonic somatic mesoderm: lines trophoblast and covers the amnion
  - extraembryonic splanchnic mesoderm: surround the umbilical vesicle.

## Day 12 - 13



- Chorion:
- Somatic mesoderm + cytotophoblast + syncytiotrophoblast = Chorion (major part of placenta)
- forms the wall of chorionic sac within which embryonic disc + amniotic sac + umbilical vesicle are suspended by connecting stalk (precursor of umbilical cord).
- primary chorionic villi

developed from extensions of cytotrophoblasts.



- Day 13-14
   primary umbilical vesicle becomes smaller and gradually disappears as secondary umbilical vesicle (yolk sac) develops.
- umbilical vesicle(yolk sac) :
- site of origin of primordial gem cells

completely lined by hypoblasts



# Day 14: End of 2<sup>nd</sup> Week



#### **Prechordal plate formed:**

—from localized thickening of hypoblasts

- indicates future site of mouth
- important organizer of head region

#### Defect in endometrial epithelium is repaired





### **Ectopic Pregnancy**

- Pregnancy in which the fertilized embryo implants on any tissue other than the endometrial lining of the uterus.
  - Tubal pregnancy 95%
  - Abdominal 1.5%
  - Ovarian 0,5%
  - Cervical 0.03%

