

Pain

<u>Pain</u> is unpleasant sensation and emotional experience associated with <u>actual or potential</u> tissue damage or described in terms of such damage. It is characterized by the following:-

- 1. It has a protective function.
- 2. All pain receptors are free nerve endings of unmyelinated C fibers & small diameter myelinated A delta δ fibers.
- 3. Pain receptors are the most widely distributed.
- o Pain sensation can be produced by various types of stimuli i.e. mechanical, thermal & chemical, hence the existence of mechanoceptors, thermoceptors, & polymodal pain receptors (nociceptors).
- o Pain receptors adapt very little, if not at all.
- o Localization of pain stimuli is less exact than that of other modalities.
- Pain receptors are high threshold receptors i.e. painful stimuli must be strong & noxious to produce tissue damage.
- o Pain is perceived at both the cortical & thalamic levels.

Effects associated with pain sensation

- 1- Motor reactions, these may take the form of:-
 - Reflexes e.g. withdrawal reflex.
 - Muscle rigidity (stiffness).
- 2- Autonomic reactions
 - Mild pain stimulates post. hypothalamic N→ sympathetic changes e.g. tachycardia.
 - Sever pain stimulates anter. hypothalamic N→ parasympathetic changes e.g. bradycardia.
- 3- Emotional reactions as anxiety, crying......etc.

Mechanism of stimulation of pain receptors (nociceptors)

- Pain receptors are depolarized either directly or through the production of pain producing substances that are
 produced from damaged tissues as a result of inflammation (also called inflammatory mediators e.g.
 bradykinin, serotonin, histamine, interleukins, substance P, K+, Ach, proteolytic enzymes.
- Prostaglandins & interleukins lower threshold of pain receptors.

Qualities of pain

	Fast pain (immediate, first)	Slow pain (delayed or second)
Called	Pricking, acute, sharp or electric pain.	Burning, aching or chronic pain.
Occurs	Skin	In skin, deep tissues & viscera
Transmitted via	Type Adelta fibers,	Type C fibers
Conduction velocity	3-30m/s	< 2m/s,
Percentage	Account for 20% of nociceptors primary afferents	Account for 80% of nociceptors primary afferents
Arise from	All types of nociceptors.	Polymodal nociceptors.
Appearance and duration	It appears very rapidly within 0.1 sec., and lasts for short time	It appears slowly, after one sec. Or more, and lasts for longer duration.
Localization	Well localized	It is diffused (poorly localized).
Neurotransmitter	Glutamate	Substance P.
E.g	E.g. The type of sensation felt when skin is cut with a knife	

Types of pain
Pain can be classified according to the site of stimulation into:-

	Somatic pain		Visceral pain
	Superficial	Deep	Visceral
Arises from	Skin or other superficial structures	Muscles, joints, periosteum, tendons & ligaments	There are few pain receptors in most viscera; some viscera are pain insensitive e.g. Liver parenchyma, lung alveoli, brain tissue, visceral layer of peritoneum, pleura and pericardium.
Quality	It occurs in 2 phase of fast pricking followed by slow burning pain.	It is slow prolonged conducted by type C fibers.	It is slow pain conducted by C fibers (pain arising from parietal peritoneum, pleura and pericardium is sharp, pricking type).
Localization	Well localized	Diffuse	It is diffuse, the patient feels pain arising from inside but he cannot pinpoint it exactly.
Associations	Associated with motor, autonomic, emotional reactions.	It can initiate reflex contraction of nearby muscles.	It is often associated with autonomic reactions. It can be associated with rigidity of nearby muscles.
Referred pain	No, cutaneous pain is not referred	It may be referred to other sites.	It may be referred to other sites.
Cause		It is caused by, trauma, bone fracture & inflammation, arthritis, muscle spasm & ischemia.	1.Distension of a hollow organs2.Inflammation of an organ.3.Ischemia e.g. Pain due to myocardial ischemia.

Referred pain

- o This is pain that is felt away from its original site.
- It is most frequent with visceral pain & deep somatic pain but cutaneous pain is not referred.
- o Pain is referred according to dermatomal rule.

Mechanism of referred pain

- Convergence theory
 - Afferent nerves from somatic structure & viscera that develop from same embryonic segment converge on same spinothalamic tract.
 - Since brain is accustomed to receiving impulses from skin than viscera, so pain impulses carried to cortex along spinothalamic neurons shared by afferents from skin & other from diseased viscus are misinterprited by the brain as coming from skin.
- Facilitation theory
 - Pain fibers from skin are always carrying impulses, but they are not enough to produce pain. Impulses
 from diseased viscus pass through afferents which give collaterals to ST neurons receiving pain fibers
 from skin. As a result, ST neurons' excitability is raised (they are facilitated) to reach a threshold level.
 The signals reaching the brain are projected to skin area and pain is felt in skin dermatome

Organ	Site of referred pain
Meninges	Back of head &neck
Heart	Central chest, left arm
Diaphragm	Shoulder tip
Esophagus	Behind sternum
Stomach,duodenum	Epigastrium
Kidney	Loin
Ureter	Testicles
Trigone of bladder	Tip of penis
Hip	knee
Appendix	Umbilicus
Uterus	Low back

Pathway of pain

Pain sensation is carried by lateral spinothalamic tracts which includes 2 separate pathways:-

	The neospinothalamic pathway	The paleospinothalamic pathway
	This transmits fast pain & thermoceptive sensation.	This transmit slow pain sensation & thermoceptive sensation
First order neurons	Are mainly A delta afferent nerves. They ascend few segments in Lissauer' tract & terminate at lamina I & V of D. horn.	They are mainly type C fibers. They enter spinal cord via dorsal roots, ascend a few segments in Lissauer' tract & terminate at substantia gelatinosa in laminae II & III of dorsal horn.
Second order neurons	These constitute the tract. They start at dorsal horn, cross to opposite side and ascend in lateral column of spinal cord. The fibers ascend in brain stem to terminate in ventrobasal complex of thalamus.	They start at SGR, cross to opposite side in front of central canal, ascend in lateral column of SC & terminate at:- *Reticular formation of brain stem. *Intralaminar nuclei of thalamus. *Hypothalamus & adjacent region of basal brain. Impulses arriving these regions have strong arousal effects and can be perceived.
Third order neurons	These start at thalamus & project to somatosensory cortex.	These start at thalamus, Project to all parts of cerebral cortex.

Role of cerebral cortex in pain perception

- ❖ Full perception of pain occurs when signals enter RF of brain stem, thalamus & basal regions.
- Somatosensory cortex plays important role in topognosis i.e. localization & interpretation of pain quality.
- ❖ Fast pain is localized better than slow pain because signals carried in neospinothalamic tract reach somatosensory cortex, while a small propotion of paleospinothalamic pathway reach there.