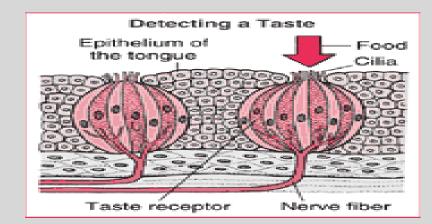


Block Physiology Team

<u>Taste</u>


- Taste is chemical sense determine the flavour of food
- Taste and smell are closely linked even though they involve different receptors and receptive processes.
- This suggests an overlap in central processing.

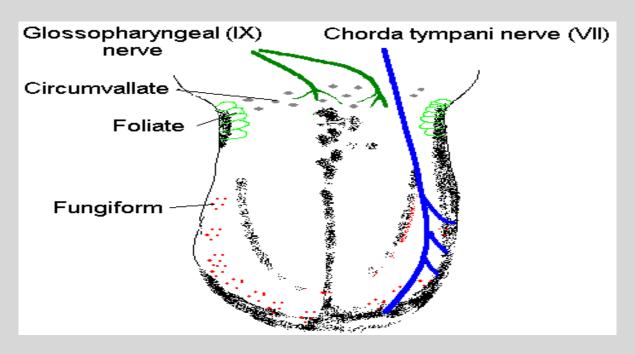
Anatomy of Taste Sensation

Taste buds

Receptors:

- Located in taste buds in:
 - Tongue (mainly)
 - Epiglottis
 - Soft Palate
 - Pharynx

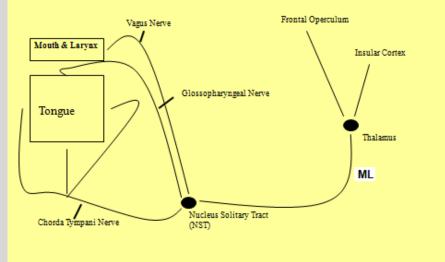
Anatomy of Taste Buds


- Taste bud : gustatory cells with microvilli (gustatory hair)
- They are receptors cells with cilia projected through taste pore in between there are supporting cells
- 10,000 taste buds found on tongue, soft palate & larynx
- Taste buds consist of:
 - ~50 receptor cells surrounded by supporting cells
 - <u>Gustatory</u> hairs project through the taste pore
 - Life span of 10 days
 - Basal cells develop into supporting cells then receptor cells

Types of papillae (projection)

- Filiform
- Fungiform
- Circumvallate
- <u>No taste buds on the mid dorsum</u> of the tongue

Nerve supply of tongue


- Taste buds When stimulated produce nerve impulse to specific brain area through:
 - Anterior 2/3 of the tongue »»»»» VII
 - Posterior 1/3 of the tongue »»»»» IX
 - Receptors on the palate, pharynx, epiglottis »»»»» X

Taste information is send to the CNS by the nerve #7, 9 and 10 to the taste nucleus (n. solitarius); from there to thalamus and insular cortex

Taste pathway

- First order neurone:
- Taste fibres from the three cranials nerves form tractus solitarius »»»» end in the nucleus of tractus solitarius (medulla)
- <u>Second order neurone:</u>
- From TS cross the midline to ascend in the medial lemniscus to the thalamus
- <u>Third order neuron:</u>
- from thalamus project the cerebral cortex through thalamic radiation

Gustatory System

Taste sensation

- Molecules dissolve in the saliva »»»» attached to receptors on cillia of gustatory cells »»»» receptors potential »»»» action potential
- Combination between molecules and receptors are week (since taste can be easily abolished by washing mouth with water)

Primary modalities of taste:

- Sour
- Salt
- Sweet
- Bitter
- umami (deliciousness), a taste associated with glutamate & other nucleotides has receptors located at the back of the pharynx.

Distribution of taste buds on tongue not uniform

- sweet tongue tip
- sour tongue margins
- bitter back of tongue
- salt widely distributed

 Sensitivity differs in different areas, but all tastes can be perceived at most areas of the tongue

Evidence for 4 modalities:

1. Cocaine on the tongue:

Sensations disappear in the following order

 $\mathsf{Pain} \rightarrow \mathsf{sweet} \rightarrow \mathsf{sour} \rightarrow \mathsf{Bitter} \rightarrow \mathsf{salt} \rightarrow \mathsf{touch}$

- 2. Gymnemic acid on tongue:
 - Bitter & sweet \rightarrow disappear
 - Sour & salt \rightarrow remain

Chemical structure and taste

- Sour ... Acidity by {H⁺} HCL ...pH = 3.5
- Salt ... Sodium chloride 0.02 M
- Sweet ..Sucrose 0.01 M
- Bitter .. Quinine Sulphate ..0.000000M

Artificial sweeteners

Saccharine, Cyclamates, Aspartame

Mechanism of stimulation of taste sensation:

- Sour taste:

Acids $(H^{+}) \rightarrow Blocks K^{+}$ channels $\rightarrow Depolarization$

Sourness receptors operate by closing potassium channels, which allows a positive charge to build up, thereby causing depolarization of the cell.

<u>Salt taste</u>

 Na^+ influx \rightarrow Depolarization

Saltiness or sodium receptors allow sodium ions to cross the membrane, thereby causing depolarization.

– <u>Sweet taste</u>

G protein \rightarrow activation of adenyl cyclase \rightarrow increase c-AMP \rightarrow decrease K conductance \rightarrow Depolarization

Bitter taste
G protein → Activatn of Phospholipase C → increase IC-insitol (PO₄)3 → Ca₂
release

Saltiness and sourness are transduced directly by sodium and hydrogen ions respectively.

The transduction process for sweetness and bitterness involve second messengers.

Discrimination of intensity of taste:

- Poor (like smell)
- Requires 30% change to allow discrimination of intensity

Adaptation to taste:

Decreased sensation from repeated stimulus

Entirely peripheral at the receptors

- Ageusia: Absence of sense of taste
- Dysgeusia: Disturbed sense of taste
- Hypogeusia: Diminshed sense of taste
- Hypergeusia: increased sense of taste

In adrenal insufficiency \rightarrow hyponatremia \rightarrow Increased taste sensation