

Physiology Team

Female Side
Done By:
Revised By

Manar Al-Jebreen

Nour Al-Khawajah

Male side
Meshal Al-Otaibi
Mohammed Asiri

CNS

Block

Slide No. (1)

Color Vision by

Dr/Faten zakareia
King Saud University Physiology Dept

COLOR VISION

- It the ability to discriminate between different colors.
1- there are 3 primary colors(blue- red- green) sensed by cones in fovea \& appreciated within photopic vision.
2- sensation of extraspectral colors as white, yellow, orange, purple, can be produced by mixing properties of the blue \&red \& green in different combinations.
3- black means absence of light (not darkness because in dark we do not see black

Team Notes :
*No cons in the peripheral.
*Extrasepectral colors: Colors other than red ,blue and green.
*Black means absence of light which means no wave length is coming out from an object.
*In darkness we can see gray black and white so there are some waves coming out from some objects.

Fovea: It's a part of the eye, located in the center of the macula region of the retina, the area of the most visual acuity.

CNS

Block

Slide No.(3)

- Color vision theorv : (Young-Helmholtz theory)
- 1- we have 3 kindes of cones each has a specific photopigment (rhodopsin) \& is sensitive to one of the $\mathbf{3}$ primary colors
- a- Blue cone svstem:- has \underline{S} pigment (blue sensation pigment) which respond to short wave length ($\mathbf{4 4 0} \mathrm{nm}$ senses the blue color)
- b= Green cone sustem:- has MI pigment (green sensation pigment) which respond to middle wave length $(535 \mathrm{~nm}$ senses the green color \& less to yellow) \& absorb light at the green portion.

Slide No. (4)

> c- Red cone system:- has \underline{L} pigment (red sensation pigment) which respond to large wave length at or
> $>\underline{535} \mathrm{~nm}$ so senses the red \& yellow color \& absorb light at the red portion.

Slide No.(7)

Block

- \#- color vision is coded by :- different responses in ganglion cells that depends upon :-
- - the wave length of stimulus which determine frequency of impulses in ganglion cells
- - the color perception in the brain depends on the amount of activity in each of the 3 cone systems as mentioned above.

Slide No.(8)

- 6-perception of orange is due to stimulation of 99% of red cones \& 42% of green cones \& 0% of blue cones(so ratio is 99:42: 0)
- 7--perception diyellow is due to stimulation of 50% of red cones \& 50% of green cones \& 0% of blue cones(so ratio is 50:50: 0)
- 8-perception of blue is due to stimulation of 0% of red cones \& 0% of green cones \& 97% of blue cones(

Block

Slide No.(9)

- COLOR BLINDNESS:-
- - There is gene for rhodopsin on chromosome(3)
- - There is gene for blue sensitive S cone pigment on chromosome(7)
- - There is gene for red \& green sensitive cone pigment on x chromosome.
- - when a single group of color receptive cones is absent (due to absence of there gene) the person can not see or distinguish some colors from others

CNS

Block

Slide No.(10)

- -red - yreen blindness:-
- -Green \& red cones see different colors between wave length $525-675 \mathrm{~nm}$ \& distinguish them.
- -If either of these cones are absent, the person can not distinguish 4 colors (red -green- yellow- orange) \& he can not distinguish red from green (primary colours) so called
- (red - green blindness).

Slide No.(11)
-It is x - linked disease transmitted from females to their male sons, never occure in females as they have $2 \times$ chromosomes

- Males have one $x \&$ one y chromosome so if this one x chromosome miss the gene for color vision, he will get red-green color blindness.
-Females show the disease only if both x chromosomes lack the gene
- Females from color blind fathers are carriers transmit the disease to $1 / 2$ of their sons.

CNS

Block
Slide No.(14)

- Nopia $=$ blindness nomaly $=$ weakness
- 1-Protanopia(red- blindness) :- no red cones system so person has shortened spectrum wave length,
- if only weakness in red color vision is called protanomaly.

Slide No.(15)

:Red color is the commonest color blindness !

Block

Examine yourself

Colour bunaness.

Each cone type contains a different light sensitive photo pigment. Colour blindness occurs when there is a defect in the genes that produce these photo pigments. Various combinations of defects can occur.

1) Missing one cone type
2) Missing two cone types
3) Missing all three cone types (vision is limited to the rods)
4) A cone type is made with a photo pigment different from normal.

The answers :
1= No red =Protanopia (Dichromat)

2=No green=Deutranopia (Dichromat)
3=no blue= Tritanopia (Dichromat)
4=Monochromat

5=Monochromat
6=Monochromat (Red-green blindness)

Block

Questions:

Q1)Which is correct about color blindness?
a)Trichromats means red color blindness
b)Dichromats means one of the color is lost
c) Protanomaly means red color blindness
d) protanomaly means blule color weakness

Q2)The frequency of the nerve impulses depends on ?
a)Type of the cone system
b)Wave length
C) the type of the nerve
D) A \& B are correct

Answers : 1=B

$$
2=B
$$

