
Macro and Micronutrients

Biochemistry team

Osamah Al-Jarallah	Al-Anood Asiri
Abdulaziz Al-Shamlan	Lama Mokhlis
Abdullah Al-Mazyad	Noha Khalil
Turki Al-Otaibi	Reem Al-Mansour
Khalid Al-Khamis	Hadeel Helmi
Saud Al-awad	Nuha Al-Furayh
Khaled Almohaimede	Jumana Al-Shammari
Meshal Al-Otaibi	Deema Jomar

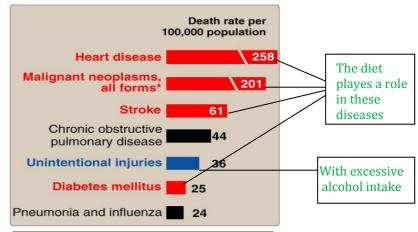
Done by: Abdullah Almazyad , Turki Al-otaibi , Nuha Alfurayh.

Dr.Othman said that : 1- I may ask you about <u>anything</u> in the *ma*cronutrients (RDI , function , related diseases ... etc) 2- If I asked you about the *mi*cronutrients , I will ask about two things : 1 – the function of it . 2- the related diseases .

Macronutrients

- Nutrients needed by the body <u>in large amounts</u> (proteins, carbohydrates, fats)
- They provide energy and building blocks for proteins, carbohydrates and fats

Micronutrients


- Nutrients needed by the body <u>in small amounts</u> (vitamins, minerals, trace elements)
- Required for maintaining normal health and preventing various diseases
- They do not provide energy

Energy Content of Food

- Body obtains energy as ATP
- ATP is used for all body functions
- The energy content of food is measured in calories (Kilocalories)
- One calorie is the heat required to raise the temperature of 1 gm. of water by 1°C
 - Proteins \rightarrow 4 kcal/gm
 - Carbohydrates → 4 kcal/gm
 - Fat \rightarrow 9 kcal/gm

Acceptable Macronutrient Distribution Range (ADMR)

- Adequate intake of macronutrients to prevent the risk of disease
- AMDR for adults:
- CHOs: 45-65%
- Proteins: 10-35%
- Fats: 20-35%

(1 calorie = 1 kilocalorie)

Figure 27.8

Influence of nutrition on some common causes of death in the United States in the year 2000. Red indicates causes of death in which the diet plays a significant role. Blue indicates causes of death in which excessive alcohol consumption plays a part. (*Diet plays a role in only some forms of cancer.)

Copyright © 2005 Lippincott Williams & Wilkins

Nutritional Importance of Proteins

- Proteins supply amino acids and amino nitrogen for the body
- Essential amino acids : Body can't synthesize, must be supplied in the diet
 - PVT TIM HALL: Pheylalanine, Valine, Tryptophan, Threonine, Isoleucine,
 - Methionine, Histidine, Arginine, Lysine, Leucine
- Non-essential: body can synthesize

Nutritional Quality of Proteins

- A measure of a protein's ability to provide the essential amino acids required for tissue maintenance
- Measured in PDCAAS units (Digestibility-Corrected Amino Acid Scoring)
- High value indicates more digestibility and high quality (maximum score 1.0, minimum score 0)
- Proteins from animal sources: 0.82-1.0 "higher sourse than plants" ٠
- Proteins from **plant** sources: 0.4

Sources and RDA

*RDA = recommended daily allowness

- Meat, poultry, fish, milk(Animal sources) wheat, corn, beans, nuts (plant sources)
- RDA (gms/kg body weight)
 - Normal adults: 0.8
 - Athletes: 1.0 (to maintain their muscle mass)
 - Pregnancy / lactation: upto 30 (to support the growth of fetus)
 - Children: 2.0 (helps in growth)

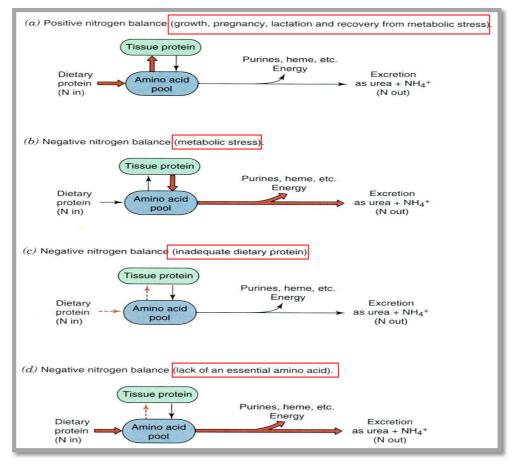
Example 1: If the weight of a normal adult is 70 kg ... the amount of protein intake should be >>> 70 * 0.8 = 56 gms

Example 2: Pregnant women weight : 65 kg >>> 65 * 30 = 1950 gms !!!! .. Because the fetus should get adequate proteins.

Nitrogen Balance

- Normal Nitrogen Balance
 - In a healthy person, the nitrogen intake is equal to nitrogen loss
- Negative nitrogen balance
 - When nitrogen loss is more than intake
 - Occurs in burns, trauma, illness, metabolic stress

Positive nitrogen balance


- When nitrogen intake is more than loss
- Occurs in growth, pregnancy, lactation, recovery from illness

because the patient already lost more proteins when he/she was ill, so to maintain the balance, the body will gain more protein and loses less for several days.

focus here on requirement and digestibility.

For example : if the protein that we eat provides all the essential amino acids, we can say that the protein quality is very high (the quality is 1.0)

Dr. sumbl said we have to

Protein-Energy Malnutrition (PME)

- Malnutrition:
 - A condition or disease caused by not eating enough food or not eating a balanced diet
- Malnutrition due to inadequate intake of proteins or energy
- Two conditions:
 - o Marasmus
 - Kwashiorkor

	Marasmus	Kwashiorkor
Cause	Inadequate intake of energy* with adequate protein intake * energy from sources other the proteins e.g. CHO and fats	Inadequate intake of proteins with adequate energy intake
Age and food intake	 1-3 year or younger Mother's milk is supplemented with food (cereals) deficient in calorie 	 After weaning (at about 1 year) Diet mainly contains CHOs
Symptoms	 Arrested growth Extreme muscle wasting Weakness Weight loss No edema or changes in plasma proteins 	 Edema(due to low plasma protein) Distended abdomen Diarrhea Dermatitis / thin hair Enlarged fatty liver Low plasma albumin " with edema "

Marasmus

Kwashiorkor

General information

When we do exercises, our body firstly burns Carbohydrates, and then fat, and finally the proteins.

Carbohydrates

- Their major role in diet is energy production (the first and the major source of energy in the body)
- ▶ RDA: **<u>130 grams/day</u>** for adults and children
- \succ Types in the diet:
 - Simple CHOs: sucrose, fructose, lactose, corn syrup
 - Complex CHOs: whole grains, pasta, wheat, starch
- CHO intake above RDA causes weight gain or obesity due to increased fat storage in adipose tissue

Protein-Sparing Effect

- > Dietary protein requirement and CHO diet are related to each other
- CHO have protein-sparing effect
 - They inhibit gluconeogenesis from amino acids
 - That way amino acids are used for repair and maintenance of tissue protein and not for gluconeogenesis
- ➤ If CHO intake is less than the RDA (130 g/day)
 - o more proteins will be metabolized
 - \circ more gluconeogenesis will take place

How does the increase in the carbohydrate lead to obesity ? When the CHO breaks down >> acetyl CoA >> synthesis of FAs >> TGA which then storage in the adipose tissue.

- > The component of food that cannot be broken down by human digestive enzymes
- RDA (gm/day): Men: 38, Women: 25

Benefits

- Lowers serum LDL levels (reduction in risk for cardiovascular diseases)
- Reduces constipation (increase bowl motility)
- Promotes feeling of fullness
- Slows gastric emptying (long-term glucose control in patients with diabetes mellitus) (generates sensation of fullness reduces postprandial – after meal – blood GLUCOSE concentration)
- Reduces exposure of gut to carcinogens

Fats in the Diet

- A concentrated source of energy (9 kcals/gram)
- Supply essential fatty acids such as linoleic and linolenic acids
- Provide phospholipids for membrane function
- Source of fat-soluble vitamins (A, D, E, K) and help in their absorption
- ▶ RDA (gm/day): Total fats: 65, Saturated: 20
- Excessive fat intake can cause
 - Atherosclerosis/heart disease (coronary heart disease)
 - o Obesity

Saturated = no double bounds Un saturated = has a double bound

Essential Fatty Acids = the body can't synthesize it.

- ➤ Two essential fatty acids:
 - o α -linolenic acid (ω -3 fatty acid)
 - o linoleic acid (ω -6 fatty acid)
- Deficiency causes: scaly skin, dermatitis, reduced growth (most common in infants)
- ➤ Used for eicosanoids synthesis which appear to have cardioprotective effects
 - decrease blood clotting
 - decrease blood pressure

Reduce the risk of cardiovascular mortality

3 or 6 depends on the position of the first double bound. Arachidonic acid (20:4, n-6) found in seed oils Arachidonic acid (EPA) (20:5, n-3) found in fish oils

- Mainly found in cold-water ocean fish such as: albacore, mackerel, salmon, sardines, tuna, whitefish
- > Play an important role as:
 - Structural membrane lipids
 - $\circ~$ Modulator of $\omega\text{-}6$ fatty acid metabolism

Sources

- Plants
- Fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)

Effects

- Suppress cardiac arrhythmias
- \downarrow Serum triacylglycerols
- \downarrow Tendency to thrombosis
- Lower blood pressure
- \downarrow Risk of cardiovascular mortality
- Little effect on LDL or HDL levels

Recommendations for Omega-3 Fatty Acid Intake American Heart Association Guidelines	
Population	Recommendation
Patients without coronary heart disease (CHD)	 Fatty fish twice a week Include oils and foods rich in a- linolenic acid (flaxseed, canola and soybean oils; flaxseed and walnuts)
Patients with CHD	 1 gm of EPA+DHA per day from fatty fish EPA+DHA supplements
Patients who need to lower triglycerides (fats)	2 to 4 grams of EPA+DHA per day

EPA+DHA= Fish oil

DHA = DocosaHexaenoic Acid

EPA = EicosaPentaenoic Acid

Omega-6 Fatty acids

Sources

- Nuts
- Avocados
- Olives
- Soybeans
- Oils (sesame, cottonseed, corn oil)

Effects

- \downarrow Plasma cholesterol
 - LDL
 HDL
 HDL

Trans Fatty Acids

- Unsaturated fatty acids, behaving more like saturated fatty acids in the body
 - increase serum LDL (but not HDL)
 - o risk of CVD " cardiovascular diseases "
- Not found in plants (animals only)
- Formed during hydrogenation of liquid vegetable oils (example : Margarine)
- Found in baked food: cookies, cakes, deep-fried foods

Cys FA is the good one which can be transferred to Trans FA by hydrogenation

	,
Micronutrients	Remember the most important things are:
	1- the function
	2- related diseases

Vitamins

- Organic compounds present in small quantities in different types of food
- Help in various biochemical processes in cell
- Important for growth and good health
- ➤ Essential
- ➢ Noncaloric
- Required in very small amounts

Vitamins - Classified Based on Solubility		
Fat-Soluble Vitamins	Water-Soluble Vitamins	
A, D, E, and K (stored in the body) (<u>A,K,E,D</u> "أكيد"	Ascorbic acid (vitamin C) Thiamin (vitamin B_1) Riboflavin (vitamin B_2) Niacin (vitamin B_3) Pyridoxine (vitamin B_6) Biotin Pantothenic acid Folate Cobalamin (vitamin B_{12})	

Vitamin D (Calciferol)

- Synthesized either from 7-dehydrocholesterol or ergosterol by UV light
- Considered a hormone, can be synthesized by the body
- > Maintains calcium homeostasis, healthy bones and teeth
- Promotes calcium/phosphorous absorption from the intestine
- Increases bone mineralization ~

Sources and RDA (IU)

- Sunlight, fish, egg yolk, milk
- ➢ Adults and Children: 600

Addition of calcium phosphate to the bone to make it hard.

Deficiency of vitamin D	
Rickets	Osteomalacia
Insufficient bone mineralization in	Bone demineralization* and
children	increased osteoporosis
Bones become soft and deformed	 *ca++ is releasing from the bones to maintain the ca++ deficiency in the blood. ➢ Painful bones with frequent fractures

Vitamin E

- Antioxidant: prevents oxidation of cell components by molecular oxygen and free radicals
- ➤ May have a role in fertility and anti-aging effect
- $\succ \alpha$ tocopherol is the most active form in the body

Sources and RDA (mg/day)

- Vegetable Oil, nuts, seeds, vegetables
- Adults: 15, Children: 7

Deficiency (mostly observed in premature infants)

- Defective lipid absorption
- > Anemia due to oxidative damage to RBCs
- Neurological problems
- ➤ Male infertility

Functions of Vitamin B₁ (Thiamin)

- > Active form: Thiamin pyrophosphate (TPP)
- Coenzyme for transketolase and oxidative decarboxylation reactions
- ➢ In thiamin deficiency, the activity of these two dehydrogenases is decreased
- Causing: Low ATP production and defective cellular function

Sources and RDA (mg/day)

- Plants, cereals, meat
- Adults: 1.2, Children: 0.6

Disorders of Vitamin B_1 (Thiamin) Deficiency		
Beriberi	Wernicke-Korsakoff syndrome	
 A type of chronic peripheral neuritis due to severe thiamin deficiency causes weakness, neuropathy, disorderly thinking, paralysis Thiamin has a role in nerve conduction Neuropathy affects glial cells (astrocytes) of the brain and spinal cord causing neuron death 	 Common in alcoholics due to defective intestinal absorption of thiamin or dietary insufficiency Causes apathy, loss of memory 	

- ➤ Folate: natural / Folic acid: synthetic form
- Essential for synthesis of many compounds
- Important in one-carbon metabolism
 - Transfers one-carbon units to intermediates, amino acids, purines and thymine
- ➢ Helps prevent cancer and heart disease

Sources and RDA (mg/day)

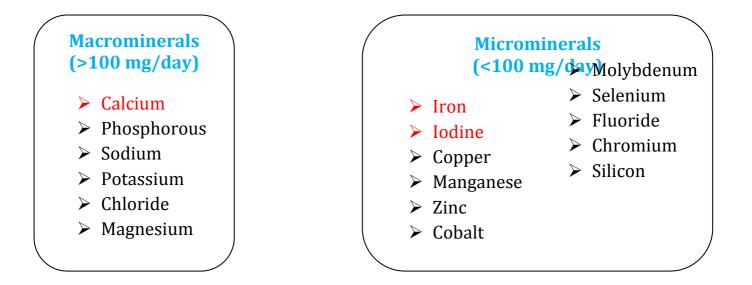
- Green leafy vegetables, lentils, peas, beans
- Adults: 400, Children: 150-200, Pregnancy: 500-600

Disorders of Folic Acid Deficiency		
Megaloblastic anemia (Deficiency in vitamin B12 OR Folic acid)	Neural tube defect (Spina Bifida)	
 Anemia with larger RBCs (Macrocytic anemia) Deficiency in pregnancy and lactation due to increased demand Poor intestinal absorption due to alcoholism or drugs 	Folic acid supplementation in early pregnancy reduces the risk of neural tube defect in fetus	

Functions of Vitamin C

- Powerful antioxidant (prevents some cancers)
- ▶ Helps in dentine, intercellular matrix and collagen formation
- Increases iron absorption
- Helps in the maturation of RBCs
- Promotes wound healing
- Stimulates phagocytic action of leukocytes
- Reduces risk of cataract formation

Sources and RDA (mg/day)


- Citrus fruits, tomatoes, melon, peppers
- Men: 90, Women: 75, Children: 15-25

Deficiency:

- > Scurvy
 - Abnormal collagen production
 - Gums become painful, swollen and spongy
 - \circ $\,$ The pulp is separated and the teeth are lost

Scorbutic gums in vitamin C deficiency. Gums are swollen, ulcerated, and bleeding due to vitamin C-induced defects in oral epithelial basement membranes and periodontal collagen fiber synthesis.

Calcium

Functions

- Bone growth and teeth formation
- Neurotransmission of nerve impulse / muscle function
- Blood coagulation / activates enzymes

Sources and RDA (mg/day)

- Mainly dairy products (milk, yoghurt, cheese)
- Men: 1000, Women: 1200, Children: 700-1300

Calcium deficiency

Rickets, osteomalacia, osteoporosis

Iron

Functions

- Oxygen transport and metabolism
- Part of hemoglobin, myoglobin, cytochromes
- ➢ Body stores iron as ferritin, hemosiderin and transferrin
- Adult women have much lower iron storage than men

Sources and RDA (mg/day)

- Heme iron: Animal products (meat, liver), 25% absorption
- > Nonheme iron: Plants (spinach, beans), 5% absorption
- Men: 8, Women: 18, Children: 7-15

Iron Deficiency	
Iron deficiency anemia (most common)	Hemosiderosis (iron overload disorder)
Microcytic anemia	
 Growing children, pregnant, lactating and menstruating women need more iron 	 Due to iron excess (toxicity) Hemosiderin (Iron stored in complex with ferritin protein in liver and spleen)
	 Occurs in persons receiving repeated blood transfusions

Iodine

- > Dietary iodine is stored in thyroid gland for thyroid hormone synthesis
- \blacktriangleright Tri-iodo-thyronine (T₃) and thyroxine (T₄)

Sources and RDA (mg/day)

- Dairy products, seafood, fortified salt
- > Adults: 150, Children: 90

Iodine deficiency	
Cretinism " in children " Goiter '' in adult ''	
deficiency of thyroid hormones in children	enlargement of thyroid gland due to iodine
causes stunted physical and mental growth	deficiency affecting thyroid hormone
	synthesis

Test your self:

1- what is the RDA of carbohydrates of normal adult ?

A- 65 gm

B- 130 gm

C- 45 gm

D- 600 gm

2- which one of the following nutrients is the major source of energy ?

- A- proteins
- **B-** Fats
- C- Carbohydrates
- **D-** Calcium

3- what is the RDA of proteins of an athlete who is 65 kg ?

- A- 45 gm
- B- 65 gm
- C- 52 gm
- D- 130 gm

4- which one of the following nutrients has a potent rule in reducing risk factors of CHD ?

- A- Omega-3 Fatty acids
- B- Omega-6 Fatty acids
- C- trans fatty acids
- D- Saturated fatty acids

5- which one of the following conditions is related to Vitamin C deficiency ?

- A- megaloblastic Anemia
- B- osteoporosis
- C- Beriberi
- D- Scurvy

6- which one of the following conditions is related to Folic acid deficiency ?

- A- megaloblastic Anemia
- B- osteoporosis
- C- Beriberi
- D- Scurvy