- Structure and function of hemoglobin-

Biochemistry Teamwork

Osamah Al-Jarallah	Al-Anood Asiri
Abdulaziz Al-Shamlan	Lama Mokhlis
Abdullah Al-Mazyad	Noha Khalil
Turki Al-Otaibi	Reem Al-Mansour
Khalid Al-Khamis	Hadeel Helmi
Saud Al-awad	Nuha Al-Furayh
Khaled Almohaimede	Jumana Al-Shammari
Meshal Al-Otaibi	Deema Jomar

By: Khaled Almohaimede, Abdulaziz Al-Shamlan & Noha Khalil

Structure and function of hemoglobin

Hemoglobin (Hb)

- ❖ A hemeprotein found only in red blood cells
- ❖ Oxygen transport function
- Contains heme as prosthetic group
- ❖ Heme reversibly binds to oxygen (the point of reversible binding is whenever the oxygen is high it takes it and whenever it is low it releases it)

Prosthetic group: Helper molecule that is bound to a protein

The heme group

- ❖ A complex of protoporphyrin IX and <u>ferrous</u> iron (Fe⁺²)
- ❖ Fe⁺² is present in the center of the heme
 ❖ Fe⁺² binds to four nitrogen atoms of the porphyrin ring
- Forms two additional bonds with:
 - Histidine residue of globin chain
 - Oxygen

The heme group: Fe^{+2} – porphyrin complex with bound O_2

Types of Hb

Normal:	HbA (97%)
	HbA ₂ (2%)
	HbF (1%)
	HbA _{1c} Levels are high in diabetic patient.
Abnormal:	Carboxy Hb
	Met Hb
	Sulf Hb

Hemoglobin A (HbA)

- Major Hb in adults
- Composed of four polypeptide chains:
 - Two α and two β chains
- **\Leftrightarrow** Contains two dimers of $\alpha\beta$ subunits
- ❖ The dimers are held together by non-covalent interactions
- ❖ Each chain is a subunit with a heme group in the center that carries oxygen
- ❖ A Hb molecule contains 4 heme groups and carries 4 molecules of O₂

1 dimer = 2 subunits (thus Hb composed of 4 subunits)

Between α and β there are hydrogen, Ionic and hydrophobic bonds while between the two dimers there are ionic and hydrogen bonds. (α and β are held together stronger than the two dimers)

HbA Structure

Copyright @ 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

- ✓ T-form of Hb
 - **❖** The deoxy form of Hb
 - Taut form (or tense form)
 - **❖** The movement of dimers is constrained
 - **❖** Low-oxygen-affinity form
- ✓ R-form of Hb
 - The oxygenated form of Hb
 - * Relaxed form
 - **❖** The dimers have more freedom of movement
 - High-oxygen-affinity form

leased (like

When Hb reaches the tissue, it becomes more taut so O_2 will be released (like squeezing). While in lungs, Hb will be in relaxed form in which more O_2 will be able to be bound.

Hemoglobin function

Carries oxygen from the lungs to tissues

Carries Carbon dioxide from tissues back to the lungs

❖ Normal level (g/dL):

Males: 14-16Females: 13-15

Factors affecting oxygen binding

✓ Three allosteric effectors:

• pO₂ (Partial oxygen pressure)

• pH of the environment

• pCO₂ (partial carbon dioxide pressure)

• Availability of 2,3-bisphosphoglycerate

Hint: BPG = DPG

Oxygen Dissociation curve

The curve is sigmoidal (sigmoidal = S-shaped)

❖ Indicates cooperation of subunits in O₂ binding (cooperation (cooperative binding): when the oxygen binds to hemoglobin it helps the binding of the next oxygen)

❖ Binding of O₂ to one heme group increases O₂ affinity of others

❖ Heme-heme interaction

As we know, we have 4 subunits, so when 1 subunit binds to O_2 , the other subunits will bind to O_2 also.

If P50 is high = low affinity
Cause: we need more pressure to
saturate O₂ within RBCs.
&
Vice versa

pO2 (partial oxygen pressure)

- ❖ Indicates affinity of Hb to O₂
- \bullet P₅₀(mmHg): the pressure at which Hb is 50% saturated with O₂
- ightharpoonup High affinity ightharpoonup slow unloading of O_2 (occur in lungs)
- \bullet Low affinity \rightarrow fast unloading of O_2 (occur in tissues)
- ❖ Lung pO₂ is 100 mm → Hb saturation 100%
- ❖ Tissue pO₂ is 40 mm → Hb saturation reduces
- ❖ Hence O₂ is delivered to tissues

Bohr: scientist name

The Bohr effect

- Effect of pH and pCO₂ on:
- Oxygenation of Hb in the lungs (pH is high in the lung)
- Deoxygenation in tissues (pH is low in the tissues)
- Tissues have lower pH (acidic) than lungs
- Due to proton generation:
- $CO_2 + H_2O \rightarrow HCO_3^- + H^+$ (H+ is more than HCO_3^-), So the environment will be acidic)
- ❖ Protons reduce O₂ affinity of Hb
- ❖ Causing easier O₂ release into the tissues
- The free Hb binds to two protons
- ❖ Protons are released and react with HCO³ to form
- The proton-poor Hb now has greater affinity for O_2 (in lungs)
- ❖ The Bohr effect removes insoluble CO₂(in the form of HCO3-) from blood stream
- Produces soluble bicarbonate

Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

Proton generation in the tissue has many sources, thus the net result will be acidic pH in tissue despite HCO₃ generation.

If the curve shifts to the left (higher PH) = higher affinity; less pressure is required for saturation If the curve shifts to the right (lower PH) = lower affinity; more pressure is required for saturation In lungs, pH is high (Alkaline), thus the affinity is high for O_2 binding

Availability of 2,3 bisphosphoglycerate (one of the glycolysis products)

- Binds to deoxy-hb and stabilizes the T-form (it reduces the affinity)
- ❖ When oxygen binds to Hb, BPG is released

At high altitudes:

- RBC number increases
- Hb conc. Increases
- BPG increases → reduces the affinity, why? To ensure O₂ delivery to the tissues.

High altitude and O2 affinity

In hypoxia and high altitude

- 2,3 BPG levels rise
- This decreases O₂ affinity of Hb
- Thus increases O₂ delivery to tissues

BPG: is produced by tissues

BPG is not bound to Hb when it reaches the lungs, but once Hb reaches to the tissue,

BPG will bind to it causing release of O2

High O2 affinity is due to:

- Alkalosis
- High levels of Hb F
- Multiple transfusion of 2,3 DPG-depleted blood

Copyright @ 2009 F. A. Davis Company www.fadavis.com

Fetal hemoglobin (HbF)

- ❖ Major hemoglobin found in the fetus and newborn
- Tetramer with two α and two γ chains
- ❖ Higher affinity for O₂ than HBA
- ❖ Transfers O₂ from maternal to fetal circulation across placenta

HbA2

- ❖ Appears ~12 weeks after birth
- ❖ Constitutes ~2% of total Hb
- **\bullet** Composed of two α and two δ globin chains

HbA1c

- HbA undergoes non-enzymatic glycosylation
- Glycosylation depends on plasma glucose levels
- ❖ HbA1c levels are high in patients with diabetes mellitus

HbA_{1c} has a half life of 2-3 weeks, so you can tell about the blood glucose level of 3 weeks ago.

Abnormal Hbs

Unable to transport O₂ due to abnormal structure

- ❖ Carboxy-Hb: CO replaces O₂ and binds 200X (200 times) tighter than O₂ (in smokers) (reversible)
- \bullet Met-Hb: Contains oxidized Fe³⁺ (~2%) that cannot carry O₂ (reversible)
- ❖ Sulf-HB: Forms due to high sulfur levels in blood (irreversible reaction)

Questions

- 1. Which one is the abnormal form of hemoglobin?
- A. Oxyhomoglobin
- B. Carbaminohemoglobin
- C. Deoxyhemoglobin
- D. Carboxyhemoglobin
- 2. A man lives at high altitudes for the past 5 years. What change would you expect in the blood of this person?
- A. Lower number of red blood cells
- B. Lower amount of hemoglobin in the RBCs
- C. Increase in the 2,3-BisPhosphoGlycerate (BPG) levels
- D. A shift of oxygen-dissociation curve to the left
- 3. Which ONE of the following is the major form of adult hemoglobin?
- A. HbA2
- B. HbA
- C. HbF
- D. HbA1c
- 4. Regarding T-form of Hb:
- A. Low-oxygen-affinity form
- B. The oxygenated form of Hb
- C. High-oxygen-affinity form
- D. The dimers have more freedom of movement

Answers: 1. D 2. C 3. B 4. A