Vitamin K

Biochemistry Team work

Osamah Al-Jarallah	Al-Anood Asiri
Abdulaziz Al-Shamlan	Lama Mokhlis
Abdullah Al-Mazyad	Noha Khalil
Turki Al-Otaibi	Reem Al-Mansour
Khalid Al-Khamis	Hadeel Helmi
Saud Al-awad	Nuha Al-Furayh
Khaled Almohaimede	Jumana Al-Shammari
Meshal Al-Otaibi	Deema Jomar

By: Meshal Al-Otaibi & Khalid Al-Khamis & Al-Anood Asiri

very important =Red

addtional info =Green

Types and Chemistry

Occurs in several forms:

- Vitamin K₁ (Phylloquinone) in plants
- Vitamin K₂ (Menaquinone) in animals
- Vitamin K₃ (Menadione) synthetic form

 K_1 and K_2 are natural, lipid soluble, non-toxic forms of vitamin K,

While vitamin K_3 is a man-made, water soluble toxic form.

Sources of Vitamin K

- Phylloquinone: Green leafy vegetables e.g. Watercress, Molokhia
- MENAQUINONE: INTESTINAL BACTERIA \rightarrow Vitamin K₂
 - \rightarrow Intestinal bacterial synthesis meets the daily requirement of vitamin K even without dietary supplement
- Menadione: synthetic form <</p>

Some of them are taken from animal liver

RDA for Vitamin K (µg/day)

Age Group	Amount
Infant (0-1 year)	2 - 2.5
Children (1-8)	30 - 55
Men (+19)	120
Woman (+19)	90
Pregnancy/lactation	90/90
Upper Limit	Not established

g-carboxyglutamate
 has the carboxyl group
 on its gamma (γ) carbon

Functions of vitamin K

- Coenzyme for the synthesis of prothrombin and blood clotting factors in the liver
- Prothrombin and clotting factors are protein in nature
- Synthesis of prothrombin (clotting factor II), clotting factors VII, IX, X require CARBOXYLATION of their glutamic acid (Glu) residue
- Mature prothrombin and clotting factors contain gcarboxyglutamate (Gla) after carboxylation reaction
- ❑ Vitamin K is essential for the carboxylase enzyme involved → DIHYDROQUINONE form of vitamin K is essential for this reaction

Analogs of Vitamin K

- Anticoagulant drugs: <u>warfarin and dicoumarol</u>
 → Structural analogs of vitamin K
- They inhibit the activation of vitamin K to hydorquinone form
 - ACT on reductase enzymes → it cannot form the hydorquinone

- Hence prothrombin and clotting factors are not carboxylated
- Blood coagulation time increases upon injury

Prothrombin – platelet interaction

Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

- Prothrombin platelet interaction
- □ Carboxylated prothrombin contains two carboxylate groups (COO⁻)
- □ These groups bind to Ca²⁺ forming prothrombin-calcium complex
- □ The complex then binds to phosholipids on the surface of platelets (important for blood clotting)
- $\hfill\square$ Converting prothrombin to thrombin and initiating clot formation

Synthesis of gamma-carboxyglutamate in osteocalcin

- Osteocalcin is a bone protein
- □ May have a role in bone formation and mineralization
- **G** gamma-carboxyglutamate is required for osteocalcin binding to hydroxyapatite (a mineral) in the bone
- □ The function of bone osteocalcin is unclear

under carboxylated osteocalcin in known to be associated with an increase in bone fracture tendency.

Deficiency of Vitamin K

- Deficiencies are rare: it is synthesized by the intestinal bacteria
- Hypoprothrombinemia: increased blood coagulation time
- May affect bone growth and mineralization
- Malabsorption of lipids leads to vitamin K deficiency
- Prolonged antibiotic therapy (especially broad spectrum antibiotics- we need to give vit K supplements with the therapy)
- Gastrointestinal INFECTIONS with diarrhea
 → Both of the above destroy the bacterial flora leading to vitamin K deficiency

DEFICIENCY MOST COMMON IN NEWBORN INFANTS:

- Newborns <u>lack</u> intestinal flora
- □ Human milk <u>cannot</u> provide enough vitamin K
- □ Supplements are given by injection

Clinical Manifestations of the Deficiency

- Hemorrhagic disease of the newborn
- Bruising tendency, ecchymotic patches (bleeding underneath the skin)
- Mucus membrane hemorrhage
- Post-traumatic bleeding / internal bleeding
- Prolonged prothrombin time

Questions

- 1) The Warfarin & Dicumarol are
 - a. Inhibit the activation of vitamin K to hydroquinone form
 - b. Structural analogs of vitamin K
 - c. Decrease absorption of vitamin K in intestine
 - d. a & b are correct

2) A deficiency in vitamin K results in a decreased level of

- a. Prothrombin
- b. Thrombin
- c. Fibrin
- d. Fibrinogen

3) Prologed use of broad-spectrum antibiotics would most likely result in what vitamin deficiency

- a. Vitamin A
- b. Vitamin K
- c. Vitamin E
- d. Vitamin D

4) Vitamin K

- a. Plays an essential role in preventing thrombosis
- b. Increase the coagulation time in newborn infants with hemorrhagic disease
- c. Is present in high concentration in cow or breast milk
- d. Is synthasized by intestinal bacteria
- e. Is a water-soluble vitamin

5) A fat slouble vitamin that regulates blood clotting

- a. Vitamin A
- b. Vitamin K
- c. Vitamin C
- d. Niacin

Answers

- 1) d
 - 2) a
 - 3) b
 - 4) d
 - 5) b