

Stage

Embryonic Stage

(lasts until about 8weeks after fertilization) Fetal Stage
(starts after the embryonic stage until birth) Before Birth
(about week 30 " $8^{\text {th }}$ month" until birth)
After Birth + adulthood

* $\boldsymbol{\zeta}=$ zeta,$\quad \boldsymbol{\varepsilon}=$ epsilon, $\boldsymbol{\gamma}=$ gamma, $\boldsymbol{\delta}=$ delta.

Hemoglobin Formation

Site of formation
Yolk sac $\alpha \zeta \varepsilon \gamma$

Liver, spleen
$\boldsymbol{\alpha} \boldsymbol{\gamma}{ }^{\prime} \boldsymbol{\beta}_{\&} \boldsymbol{\delta}$ in small amount"
Bone marrow
Bone marrow $\quad \boldsymbol{\alpha} \boldsymbol{\beta}$ "mainly, $\boldsymbol{\varphi} \& \boldsymbol{\delta}$ in small amount"
-Bone marrow production: -long bones stop at the age of 5 .
-Flat bones continue the whole life e.g. vertebrae, sternum.
-The adulthood for hemoglobin is one year of age.
The genes that control synthesis of globin chain carried on 2 chromosomes
chromosome 16

$\alpha+\zeta$

chromosome 11

$$
\varepsilon \gamma \beta \delta
$$

Chromosome 11

A Hemoglobin molecule has 4 globin chains; each one is attached to heme.
*Alpha (α) chains are made of 141 amino acids.
*Beta (β) chains are made of 146 amino acids.
\qquad

Hemoglobin

Percentage

	Name	Chains		fetal	At birth	Adult（one year）		
				Saudis		Caucasian		
Adult hemoglobin	HaemoglobinA	人2	$\beta 2$		15－40\％	15－40\％	95\％	97\％
	HaemoglobinA2	人2	$\delta 2$	－	＜0．3\％	3．5\％	2．5\％	
	HaemoglobinF＊	人2	Y2	60－85\％	60－85\％	1．5\％	0．5\％	
EMBRYONIC hemoglobin	HaemoglobinGower I	$\zeta 2$	$\epsilon 2$					
	HaemoglobinGower II	人2	$\epsilon 2$					
	Haemoglobinportland	$\zeta 2$	γ^{2}					
Abnormal hemoglobin	HaemoglobinH		$\beta 4$					
	Haemoglobin Bart＇s	－	¢4		＜0．5\％＊＊			
	Haemoglobin Lepore	人2	$(\delta \beta) 2$					

＊heamoglobin F is a fetal and adult hemoglobin．
＊＊it is normal to present at birth in minimal amount（less than 0.5% ），but it has to disappear after that or it will be abnormal（ α thalassaemia）．

HaemoglobinH：Seen after one year and result in α thalassaemia．
HaemoglobinA2 ：If there is an \uparrow by 1% only，will result in β thalassaemia ，but if there is a \downarrow by 1% only ，will result in α thalassaemia．

Questions

1. Which one of the following is an abnormal hemoglobin in humans?
A. Hemoglobin A2
B. Hemoglobin F
C. Hemoglobin A
D. Hemoglobin C
2. The structure of Hemoglobin A is composed of ?
A. 2 alpha globin chains and 2 delta globin chains
B. 2 alpha globin chains and 2 beta globin chains
C. 2 alpha globin chains and one beta globin chains
D. 2 alpha globin chains and 2 gamma globin chains
3. The alpha genes (4 genes) are located on which one of the following chromosome ?
A. Chromosome 11
B. Chromosome 12
C. Chromosome 16
D. Chromosome 20
4. The following haemoglobins are composed of structural globin chains (Mark one false).
A. Haemoglobin A is composed of 2 alpha and 2 beta chains.
B. Haemoglobin A2 is composed of 2 alpha and 2 delta chains.
C. Haemoglobin F is composed of 2 alpha and 2 gama chains.
D. Haemoglobin Barts is composed of 4 alpha chains.
E. Haemoglobin H is composed of 4 beta chains.
5. Quantitative measurements of the normal human haemoglobins at 1 year of age are as follows: (Mark one false)
A. Haemoglobin A (95-97\%).
B. Haemoglobin A2=(2.5-3.5\%).
C. Haemoglobin F = (less than 1.5\%),
D. Haemoglobin Barts = (4-5\%).
E. Haemoglobin $\mathrm{H}=$ Not measurable.
Answers: 1: D 2: B 3: C 4:D 5: D
\qquad
