# **Thyroid Hormones and Thermogenesis**

#### **Biochemistry Teamwork**



| Osamah Al-Jarallah   | Al-Anood Asiri     |
|----------------------|--------------------|
| Abdulaziz Al-Shamlan | Lama Mokhlis       |
| Abdullah Al-Mazyad   | Noha Khalil        |
| Turki Al-Otaibi      | Reem Al-Mansour    |
| Khalid Al-Khamis     | Nuha Al-Furayh     |
| Saud Al-awad         | Jumana Al-Shammari |
| Khaled Almohaimede   | Deema Jomar        |
| Meshal Al-Otaibi     | Fatimah Abdulkarim |
|                      | Lamia Alghamdi     |

Done by: Noha Khalil & Turki Al-Otaibi



# Types & Biosynthesis of Thyroid Hormones:

- Thyroxine (T<sub>4</sub>) and tri-iodothyronine (T<sub>3</sub>)
- Synthesized in the thyroid gland by:
  - Iodination
  - Coupling of two tyrosine molecules
- Thyroid gland secretes mostly T<sub>4</sub>
- Peripheral tissues (liver, kidney, etc.) de-iodinate  $T_4$  to  $T_3$
- T<sub>3</sub> is the more biologically active form
- T<sub>4</sub> can be converted to rT<sub>3</sub> (reverse T<sub>3</sub>) inactive form (this is a regulatory mechanism) (when there is increased serum T<sub>3</sub>, the body converts it to reverse T<sub>3</sub>, which is inactive, instead of converting it to the active T<sub>3</sub>)
- Most of T<sub>4</sub> is transported in plasma as protein-bound
  - Thyroxin Binding globulin (TBG)-bound (70%)
  - Albumin-bound (25%)
  - Transthyretin (prealbumin)-bound (5%)
- The unbound (free) form of  $T_4$  and  $T_3$  exert their biologic effects.



### Thyroid hormone action:

- Essential for normal maturation and metabolism of **all** body tissues.
- Affects the rate of protein, carbohydrate and lipid metabolism.
- Thermogenesis

# Evidences for the essential actions of thyroid hormones:

1. Congenital hypothyroidism: if untreated within 3 months of birth  $\rightarrow$  permanent brain damage

- 2. Hypothyroid children have:
  - -delayed skeletal maturation  $\rightarrow$  short stature
  - -delayed puberty
- 3. Hypothyroid patients have high serum cholesterol due to:
  - -Down regulation of LDL receptors on liver cells
  - -Failure of sterol excretion via the gut

## Regulation of Thyroid Hormone Secretion:

- -Components of hypothalamic-pituitarythyroid axis:
  - -TRH (tripeptide)
  - -TSH (large Glycoprotein)
  - -Thyroid hormones
- High thyroid hormone levels suppress TRH (thyrotropin releasing hormone) & TSH (thyroid stimulating hormone)
- Low thyroid hormone levels stimulate TRH & TSH to produce more hormones.
- The hypothalamic-pituitary-thyroid axis regulates thyroid secretion.
- The hypothalamus senses low levels of  $T_3/T_4$  and releases thyrotropin releasing hormone (TRH)
- TRH stimulates the pituitary to produce thyroid stimulating hormone (TSH)
- TSH stimulates the thyroid to produce  $T_3/T_4$  until levels return to normal
- The Circulating Unbound  $T_3/T_4$  exert negative feed-back control on the hypothalamus and pituitary
- Controlling the release of both TRH and TSH



### Thyroid Function Tests (TFT):

#### 1. TSH measurement:

- Indicates thyroid status
- Sensitive, first-line test

#### 2.Total T<sub>4</sub> or free T<sub>4</sub>:

- Indicates thyroid status
- Monitors thyroid treatment (both anti-thyroid and thyroid supplement treatment)
- Why don't we measure TSH to monitor treatment? Because TSH may take up to 8 weeks to adjust to a new level during treatment

#### 3. Total T<sub>3</sub> or free T<sub>3</sub>:

- In hyperthyroidism, the rise in T<sub>3</sub> is disproportionate (independent) of T<sub>4</sub>
- For earlier identification of thyrotoxicosis
- In some patients only T<sub>3</sub> rises (T<sub>4</sub> is normal): T<sub>3</sub> toxicosis

### 4.Antibodies:

- Diagnosis and monitoring of autoimmune thyroid disease (Hashimoto's thyroiditis); anti-thyroid peroxidase (anti-TPO) in hypothyroidism.
- Diagnosis of Grave's disease: stimulating antibodies against TSH (anti-TSH) (Thyroid Stimulating Immunoglobulin) receptors on thyroid cells in thyrotoxicosis.

### Drugs affecting TFT: (not important)

- Amiodarone
- Lithium
- Anticonvulsants
- Heparin
- Aspirin

### Goitre:

- Enlarged thyroid gland (enlarged doesn't mean it is hyper functioning)
- **<u>Functionally</u>**: Goitre may be associated with:
  - $\circ$  Hypofunction
  - Hyperfunction
  - Normal concentration of thyroid hormones (euthyroid)



#### • Causes:

- Iodine deficiency
- Selenium deficiency
- o Hashimoto's thyroiditis
- o Congenital hypothyroidism
- Grave's disease (hyperthyroidism)
- Thyroid cancer

## Hypothyroidism:

- Deficiency of thyroid hormones
- Primary hypothyroidism:
  - Failure of thyroid gland (Elevated TSH level is diagnostic)
- Secondary hypothyroidism:
  - Failure of the pituitary to secrete TSH (rare)
  - Failure of the hypothalamic-pituitary-thyroid axis (e.g. any pituitary disease)
- Causes:
  - Hashimoto's disease (autoimmune destruction of the thyroid gland)
  - Radioiodine or surgical treatment of hyperthyroidism (side effect of aggressive treatment of hyperthyroidism)
  - Drug effects (e.g. lithium)
  - TSH deficiency (may be with panhypopituitarism it means all the pituitary gland is affected )
  - $\circ~$  Congenital defects (e.g. defective synthesis of  $T_4$  &  $T_3$ , or organ resistance to their actions)
  - $\circ$  Severe iodine deficiency

### • Clinical features

- o Tiredness
- Cold intolerance
- $\circ$  Weight gain
- $\circ~$  Dry & coarse skin and hair
- Others (constipation, bradycardia,...)
- Diagnosis
  - Elevated TSH level confirms hypothyroidism (because in Hypothyroidism, Circulating Thyroid hormones are very low which will stimulate the hypothalamus (to release TRH) and anterior pituitary gland (to release TSH) >>Result : Elevated TSH



#### • Treatment

- T<sub>4</sub> replacement therapy (tablets)
- $\circ~$  Monitoring TSH and  $T_4$  level to determine dosage & the adequacy of treatment.
- o Patient has to continue treatment for life
- Neonatal hypothyroidism (primary)
  - o Due to genetic defect in thyroid gland of newborns
  - $\circ~$  Diagnosed by TSH screening
  - $\circ$  Hormone replacement therapy
  - May cause cretinism, if untreated
  - Cretinism is manifested by puffy face, protuberant tongue, umbilical hernia, mental retardation, short stature, deaf mute, and neurological signs

### • Non-thyroidal illness (acute illness)

- $\circ~$  In some systemic diseases, the normal regulation of TSH,  $T_3$  and  $T_4$  secretion and metabolism is disturbed & the concentrations of the transport proteins (albumin and transthyretin) are low.
- Most of T<sub>4</sub> is converted to rT<sub>3</sub> (inactive) → ↓thyroid hormone activity (low T<sub>3</sub> syndrome)
- This does not increase TSH secretion (TSH is suppressed) → secretion of T<sub>4</sub> and T<sub>3</sub> is decreased



ig. 1 Strategy for the biochemical investigation of suspected hypothyroidism.



### Hyperthyroidism:

- **Hyperthyroidism** is over-activity of the thyroid gland→ ↑secretion of thyroid hormones (primary)
- Tissues are exposed to ↑ levels of thyroid hormones (**thyrotoxicosis**) (Not all thyrotoxicosis is caused by hyperthyroidism)
- ↑ Pituitary stimulation of the thyroid gland (rare) (secondary)
- Causes:
  - Grave's disease (the most common cause)
  - $\circ$  Toxic multinodular goitre
  - o Thyroid adenoma
  - $\circ$  Thyroiditis
  - o Intake of iodine / iodine-containing drugs e.g. amiodarone
  - Excessive intake of T<sub>4</sub> and T<sub>3</sub> (Factitious hyperthyroidism)

#### • Clinical features:

- $\circ$  Weight loss with normal appetite
- $\circ$  Sweating / heat intolerance
- o Fatigue & generalized muscle weakness, proximal myopathy
- Palpitation / agitation, tremor
- o Angina, heart failure
- $\circ$  Diarrhea
- o Eyelid retraction and lid lag
- o Goiter
- o Oligomenorrhoea & subfertility
- Diagnosis
  - Suppressed TSH level
  - Raised thyroid hormones level
- Problems in diagnosis
  - Total serum[T<sub>4</sub>] changes due to changes in binding protein levels
  - In pregnancy, high estrogens → increase TBG synthesis in the liver (TBG will bind to T<sub>4</sub>)
    - Total [T<sub>4</sub>] will be high, free [T<sub>4</sub>] will be normal (because when TBG binds to free T<sub>4</sub>, the decrease in free T<sub>4</sub> will stimulate TRH release → increases TSH → increases free T<sub>4</sub> synthesis to normal.)

**Confirms** primary

hyperthyroidism

- Congenital TBG deficiency → problem in screening of thyroid hormones.
- Free T<sub>4</sub> and TSH are first-line tests for thyroid dysfunction

• Treatment

- Antithyroid drugs: carbimazole, propylthiouracil
- $\circ$  Radioiodine: sodium <sup>131</sup>I inhibits T<sub>4</sub>/T<sub>3</sub> synthesis
- Surgery: thyroidectomy

# Grave's Disease: Diffuse Toxic Goiter

- Most common cause of hyperthyroidism
- An **autoimmune** disease
- Antibodies against TSH receptors on thyroid cells mimic the action of pituitary hormone
- Normal regulation of synthesis/control is disturbed



 $Fig.\ 2 \quad \text{Strategy for the biochemical investigation of suspected hyperthyroidism.}$ 

### Thermogenesis:

- Thyroid hormone has an active role in thermogenesis
- About 30% of thermogenesis depends on thyroid hormone
- Thyroid hormone regulates metabolism and ATP turnover
- It increases ATP synthesis and consumption
- Na+/K+ gradient requires ATP to maintain it
- The gradient is used to transport nutrients inside the cell
- Thyroid hormone reduces Na+/K+ gradient across the cell membrane by increasing metabolism (more nutrient transport in the cell)
- This increases the demand for ATP to maintain the gradient
- ATP synthesis and consumption that produce heat is increased

### Mechanism of action of uncoupling proteins (UCP):



The energy released in the oxidation of substrates in the Mitochondria  $\rightarrow$  causes a proton gradient

The energy accumulated in this gradient is used by the ATP Synthase to produce ATP

Û

UCPs reduce the proton gradient, by passing the ATP synthase  $\rightarrow \underline{\text{exothermic}}$ movement of protons down the gradient  $\rightarrow$  heat

# Uncoupling proteins (UCPs):

- UCP1 is the best known and best characterized of the UCPs, is present in the inner mitochondrial membrane of brown adipose tissue.
- Other UCP are found in the inner mitochondrial membrane of organs and tissues other than the brown adipose tissue (**Ubiquitous distribution**) (ubiquitous meaning it is spread in all organs)

The only thing we need to know about this picture is that T<sub>3</sub> helps in release of heat through hypothalamicpituitary-thyroid axis by controlling UCP.



### **Questions:**

1. Which one of the following will be seen in case of primary hyperthyroidism?

- A. T<sub>4</sub> is low
- B. T<sub>3</sub> is low
- C. TSH is low
- D. All are wrong

2. Which one of the following will happen in case of neonatal hypothyroidism?

- A. Acromegaly
- B. Dwarfism
- C. Cretinism
- D. Gigantism

3. Administration of TSH increases serum T3 and T4 in:

- A. Hyperthyroidism of pituitary origin (secondary)
- B. Hypothyroidism of pituitary origin (secondary)
- C. Hyperthyroidism of thyroid origin (primary)
- D. Hypothyroidism of thyroid origin (primary)

4. High level of T3 and T4 and low TSH in serum indicates:

- A. Hyperthyroidism of pituitary origin (secondary)
- B. Hypothyroidism of pituitary origin (secondary)
- C. Hypothyroidism of thyroid origin (primary)
- D. Hyperthyroidism of thyroid origin (primary)

Answers: 1-C, 2-C, 3-B, 4-D