Metabolic Changes in Diabetes Mellitus

Biochemistry Teamwork

Khalid Al-Khamis	Al-Anood Asiri
Abdulaziz Al-Shamlan	Lama Mokhlis
Abdullah Al-Mazyad	Noha Khalil
Turki Al-Otaibi	Reem Al-Mansour
Meshal Al-Otaibi	Nuha Al-Furayh
Saud Al-awad	Jumana Al-Shammari
Khaled Almohaimede	Deema Jomar
Osamah Al-Jarallah	Fatimah Abdulkarim
	Lamia Alghamdi

Done by: Saud Al-awad , Osamah Al-Jarallah , and Nuha Al-Furayh

Metabolic Changes in Diabetes Mellitus

Background

- Differences between type 1 and type 2 DM
- Natural course of T1DM
- ▶ Natural course of T2DM
 - Diagnostic criteria for DM
 Metabolic changes in DM
- ▶ Increase of hepatic glucose output
- Decrease of glucose uptake
- ▶ Inter-organ relationship in T1DM and T2DM
 - Mechanisms of diabetic complications

Comparison of type 1 and type 2 DM

	Type 1 Diabetes	Type 2 Diabetes
AGE OF ONSET	Usually during childhood or puberty; symptoms develop rapidly	Frequently after age 35; symptoms develop gradually
NUTRITIONAL STATUS AT TIME OF DISEASE ONSET	Frequently undernourished	Obesity usually present
PREVALENCE	900,000 = 10% of diagnosed diabetics	10 Million = 90% of diagnosed diabetics
GENETIC PREDISPOSITION	Moderate	Very strong
DEFECT OR DEFICIENCY	β Cells are destroyed, eliminating production of insulin	Insulin resistance combined with inability of β cells to produce appropriate quantities of insulin
FREQUENCY OF KETOSIS	Common	Rare
PLASMA INSULIN	Low to absent	High early in disease; low in disease of long duration
ACUTE COMPLICATIONS	Ketoacidosis	Hyperosmolar coma
TREATMENT WITH ORAL HYPOGLYCEMIC DRUGS	Unresponsive	Responsive
TREATMENT	Insulin is always necessary	Diet, exercise, oral hypoglycemic drugs, +/- insulin

Criteria for diagnosis of DM: " Dr.Reem said: the most important nom. here is >6.5 % "

General Mechanisms for Diabetic Microvascular Complications

<u>Chronic hyperglycemia \rightarrow </u>

- 1. \uparrow AGEs of essential cellular proteins \rightarrow cellular defects
- 2. \uparrow Intracellular sorbitol \rightarrow \uparrow cell osmolality \rightarrow cellular swelling
- 3. \uparrow **ROS** \rightarrow oxidative stress \rightarrow cell damage

Advanced Glycosylation End Products (AGEs)

- Chronic hyperglycemia → non-enzymatic combination between excess glucose & amino acids in proteins → formation of AGEs
- ► AGEs may cross link with collagen → microvascular complications
- The interaction between AGEs and their receptor (RAGE) may generate reactive oxygen species (ROS) → inflammation

Polyol pathway(Sorbitol Metabolism , A Mechanism for Diabetic Complications)

- **Glucose** is metabolized to **sorbitol** within the cells by **aldose reductase**
- > The role of sorbitol in the pathogenesis of diabetic complications is uncertain. Hypotheses are:
- During sorbitol production, consumption of NADPH \rightarrow oxidative stress.
- Sorbitol accumulation \rightarrow
- Increase the intracellular osmotic pressure → osmotic drag of fluid from extracellular space
 → cell swelling
- Alteration in the activity of PKC \rightarrow altered VEGF activity \rightarrow altered vascular permeability

Diabetic Retinopathy

- A progressive microvascular complication of DM, affecting the retina of the eye
- A major cause of morbidity in DM (→blindness)
- \blacktriangleright Its prevalence \uparrow with increasing duration of disease in both type 1 & 2 DM
- After 20 years of the disease:
- Is present in almost all T1DM
- Is present in 50 80% of T2DM

Diabetic Nephropathy

- Occurs in both type 1 & type 2 DM
- The earliest clinical finding of diabetic nephropathy is microalbuminuria.(is detected by nephelometer)
- (the persistent excretion of small amounts of albumin (30-300 mg per day) into the urine)
- Microalbuminuria is an important predictor of progression to proteinuria:
- (the persistent excretion of >300 mg albumin per day into the urine)
- Once proteinuria appears, there is a steady \downarrow in the glomerular filtration rate (GFR)
- Finally, end-stage renal disease occurs

Sequence of Events in Diabetic Nephropathy

Diabetic Neuropathy

- > Loss of both myelinated and unmyelinated nerve fibers
- Occurs in both type 1 & type 2 DM
- > It correlates with the duration of DM & with glycemic control

Insulin Resistance

Can be cause by insulin abnormality, insulin receptor abnormality, or abnormality in post-receptor events(commonest)

Review Question

1. Regarding diabetic retinopathy, which is incorrect:

- A. Higher risk in type 1
- B. Microvascualr disease contributes to the progression of diabetic retinopathy
- C. Never happens in type 2
- D. Common complication

2. Microalbiminuria is a complication occurs in:

A. Diabetic retinopathy

- B. Diabetic nephropathy
- C. Diabetic neuropathy
- D. Diabetic ketoacidosis

3. Which one of the following cut-off points of Hemoglobin A1C is used to diagnose diabetes?

- A. Less than 6.5 %
- B. More than 6.5 %
- C. More than 5.6 %
- D. Less than 5.6 %

$4. \ \ \, \text{All of the following are major metabolic changes seen in diabetes mellitus except:}$

- A. Glycogenolysis
- B. Increased protein synthesis
- C. CIncrease lipolysis
- D. Increase production of ketone bodies

5. Chronic hyperglycemia will lead to non-enzymatic combination between excess glucose and amino acids in proteins which is know as:

- A. Polyol pathway
- B. ROS
- C. Advanced Glycosylation End Products
- D. None of the above

6. Microvascualr complication seen in DM, may result form cross linkage between:

- A. AGEs and Amyloid
- B. Cytokines and IL-1
- C. AGEs and Interferon Alfa
- D. AGEs and Collagen

7. Sorbitol accumulation in retina, nerves, and kidney is responsible for the diabetic complication, because these tissues do not have the following enzyme:

- A. Sorbitol hydroxylase
- B. Aldos Reductase
- C. Sorbitol dehydrogenase
- D. DGlucokinase

8. The earliest clinical finding of diabetic nephropathy is:

- A. Proteinuria
- B. Macroalbuminuria
- C. Microalbuminuria
- D. Albumin excretion is normal

1-C 2-B 3-B 4-B 5-C 6-D 7-C 8-C