Diabetic Ketoacidosis (DKA)

Biochemistry Teamwork

Khalid Al-Khamis	Al-AnoodAsiri
Abdulaziz Al-Shamlan	Lama Mokhlis
Abdullah Al-Mazyad	Noha Khalil
Turki Al-Otaibi	ReemAl-Mansour
Meshal Al-Otaibi	Nuha Al-Furayh
Saud Al-awad	Jumana Al-Shammari
Khaled Almohaimede	DeemaJomar
Osamah Al-Jarallah	Fatimah Abdulkarim
	Lamia Alghamdi

Done by: Abdullah Al-Mazyad & Khaled Almohaimede & Lamia Alghamdi

• DKA may be the first presentation of T1DM

Patient with T1DM have more chance to develop DKA than patient with T2DM

Ketone Bodies (Water soluble compounds)

- [1. Acetoacetate
- h proton H+ plasma 2. Acetone

conc. **→**

acidosis

3. β-Hydroxybutyrate

Acetone is metabolically inactive, is excreted in the breath; helps in diagnosis

4. They are produced by the liver (<u>ketogenesis</u>) and utilized for energy production by peripheral tissues (<u>Ketolysis</u>)

Normally, glucose is the primary fuel for the brain.

It can penetrate the blood brain barrier. The brain's GLUT is insulin-independent.

If glucose is not available for the brain, the brain can utilize plasma ketone bodies, that can penetrate the blood brain barrier, and serve as fuel molecules.

(Ketolysis produces energy)

Acetvl CoA is channeled into KB synthesis

Figure 16.22 Svnthesis of ketone bodies. HMG =

EXTRA NOTE: HMG CoA

is important in cholesterol synthesis.

In a nutshell OAA → gluneogenesis → hyperglycemia Acetyl CoA → ketogenesis → ketonemia

Acetyl coA is the precursor of ketone bodies.

In diabetes, Glucagon overwhelm insulin effect, thus Oxaloacetate used in gluconeogenesis process rather than Krebs cycle, because gluconeogenesis is stimulated by glucagon while insulin stimulate krebs cycle.

Ketone Bodies Utilization = Ketolysis

- Takes place in extrahepatic tissues
- Occurs in the mitochondria (so cannot occur in RBCs)
- Does not occur in the liver (as the liver lacks the thiophorase enzyme required for ketolysis)
- β-Hydroxybutyrate is oxidized to acetoacetate (by a dehydrogenase)
- Acetoacetate is converted to acetoacetyl CoA (catalyzed by thiophorase)
- Acetoacetyl CoA is converted to acetyl CoAs.

EXTRA: Physical or mental stress produces hormones like cortisol, epinephrine which act in opposition to insulin's action.

FATTY ACID

2 Acetyl CoA

COA

toacetyl Col

Acetyl CoA

OXIDATION GLYCOLYSIS

AMINO ACID

CATABOLISM

Co/

Acetyl CoA

NADH+H+

>NAD+

In uncontrolled DM there is \uparrow lipolysis in adipose tissue $\rightarrow \uparrow$ [FFA] $\rightarrow \uparrow$ mobilization of FFA to liver $\rightarrow \uparrow$ hepatic FA oxidation $\rightarrow \uparrow$ hepatic acetyl CoA which will be utilized in KB synthesis (ketogenesis) \rightarrow ketoacidosis

In uncontrolled DM the rate of ketogenesis is > the rate of ketolysis \rightarrow ketonemia (\uparrow [KB] in blood) \rightarrow ketonuria (**↑**[KB] in urine).

Manifestations of DKA:

Trauma

LIVER

3-Hydroxy-3-methylglutaryl CoA

Acetoacetate

3-Hydroxybutyrate

Fruity odor on the breath (acetone) Acidosis (low pH of blood because KBs are acids) Dehydration (due to glucosuria 'glucose drags H2O')

Precipitating factors for DKA

Infections result in dehydration which also precipitates the development of DKA.

DKA in uncontrolled diabetes is triggered by infections in 30-40% of cases (e.g. UTI, tonsillitis)

Inadequate insulin treatment or non-compliance (20%)

Drugs: e.g., steroids(tceffe cinegotebaid sti ot eud)

Severe illness e.g., Myocardial infarction

Infection (30-40%)(due to oxidative stress)

PERIPHERAL TISSUES

(for example, MUSCLE)

Acetoacetate

-Hydroxybutyrate

Succinate,

TCA CYCLE

Succinyl CoA

NADH+H*

3

NAD+

2 Acetyl CoA

Acetoacetyl CoA

hiophora

BLOOD

Acetoacetate

Acetone

-Hydroxybutyrate

- CO2

Or Hyperosmolar non-ketotic acidosis (HONK)

Hyperosmolar hyperglycaemic state (HHS)

- Little or no accumulation of ketone bodies
- Serum [glucose] is often >50 mmol/L (HYPERGLYCEMIA)
- Plasma osmolality may reach 380 mosmol/Kg (normal 275-295)
- Neurological abnormalities are frequently present
- Insulin levels are insufficient to allow appropriate glucose utilization but are adequate to prevent lipolysis and subsequent ketogenesis
- Usually occurs in elderly patients with T2DM
- Has a substantially higher mortality than DKA (up to 15%)

Hypoglycemia

- Common complication of treatment with insulin or oral hypoglycaemics
- More common in patients with T1DM
- \circ Characterized by:
 - CNS Symptoms (confusion, aberrant behavior, or coma)
 - Low blood [Glucose]
 - Symptoms resolved within minutes following the administration of glucose

Hypoglycemia is a medical emergency, Why?

- The brain has absolute requirement for a continuous supply of glucose
- Transient hypoglycemia \rightarrow cerebral dysfunction
- Severe, prolonged hypoglycemia \rightarrow brain death

Numbers not to be memorized – Dr. Reem

Hypoglycemia, continued..

- Hypoglycemia occurs due to impaired protective responses to hypoglycemia:
 - Insulin is supplied exogenously and its release cannot be turned off (lowers glucose levels continuously)
 - Glucagon & adrenaline response to hypoglycemia becomes impaired later in the course of DM

Clinical presentation:

- Symptoms of sympathetic overactivity(plasma [glucose] <3.6 mmol/L, abrupt fall): anxiety, tremors, sweating & palpitation.
- Symptoms of neuroglycopenia (plasma [glucose] <2.6 mmol/L, gradual fall): headache, confusion, drowziness and ultimately loss of consciousness or seizures (at plasma [glucose]
 <1.5 mmol/L)

Hormonal mechanisms to prevent or correct hypoglycemia:

LOW BLOOD GLUCOSE Production of insulin A (Blood glucose less than 40 mg/dl) **↑**production of: Epinephrine & glucagon 1 glycogenolysis typothalamic **Growth hormone** regulato Pituita Cortisol _ ▲↑gluconeogenesis utonomic nervous system Y Adrenal Pancreas X sulin In Norepinephrine Cortisol Epinephrine Glucagon Glyco-enolysis 0 +++ ++ Gluconeo ++ 0 ++

Glycemic thresholds for the various responses to hypoglycemia:

Be familiar with the steps, not to be memorized. – Dr. Reem.

A CASE of DKA

A 14-year-old girl was admitted to a children's hospital in coma. Her mother stated that the girl had been in good health until approximately 2 weeks previously, when she developed a sore throat and moderate fever. She subsequently lost her appetite and generally did not feel well. Several days before admission she began to complain of undue thirst and also started to get up several times during the night to urinate. However, on the day of admission the girl had started to vomit, had become drowsy and difficult to arouse, and accordingly had been brought to the emergency department.

On examination:

- She was dehydrated
- Her skin was cold
- She was breathing in a deep sighing manner (Kussmaul respiration)
- Her breath had a fruity odor
- Her blood pressure was 90/60 mmHg (N: 120/80)
- Her pulse rate 115/min.
- She could not be aroused

A provisional diagnosis of T1DM with complicating ketoacidosis and coma (DKA) was made by the intern on duty

Laboratory findings

blood results

Plasma analytes	Patient's results	Normal levels
Glucose (mmol/L)	50	4.2-6.1
Ketoacids	++++	(trace)
Bicarbonate (mmol/L)	6	22-30
Arterial blood pH	7.07	7.35-7.45
Na ⁺ (mmol/L)	136	136-146
Cl ⁻ (mmol/L)	100	102-109
PCO ₂ (kPa)	2.7	4.3-6.0
*Anion gap (mmol/L)	35.5	7-16
K⁺ (mmol/L)	5.5	3.5-5.0
Urea nitrogen (mmol/L)	15	2.5-7.1
Creatinine (µmol/L)	200	44-80
Albumin (g/L)	50	41-53
Osmolality (mOsm/kg	325	275-295
serum water)		
Hematocrit	0.500	0.354-0.444

*Anion gap (A^{-})= ($Na^{+} + K^{+}$)- ($HCO_{3}^{-} + CI^{-}$)

Urine results

Urine analyte	Patient's results	Normal levels
Glucose	++++	-
Ketoacids	++++	-

Interpretation of Laboratory findings

Results	Interpretation
Hyperglycemia	
Glucosuria	Confirm the diagnosis of DKA
Ketonemia	
Ketonuria	
↓рН	Severe metabolic acidosis due to \uparrow production of ketone bodies
↓bicarbonate and	Metabolic acidosis with partial respiratory compensation (the
PCO ₂	hyperventilation)
↑ anion gap	Due to \uparrow ketone bodies in the blood
	1. Renal impairment (dehydration $\rightarrow \downarrow$ blood volume $\rightarrow \downarrow$ renal perfusion)
↑urea&creatinine	2. Dehydration
	3. Degradation of protein (for urea) hcihw nilusni fo level wol fo esuaceb
	tceffe cilobana na tog sah
↑κ ⁺	\downarrow Uptake of potassium by cells in the absence of insulin
↑ Plasma osmolality	Due to hyperglycemia and fluid loss

Questions:

1. Which one of the following is the rate limiting enzyme of

ketogenesis?

- A. Thiolase
- B. HMG CoA synthase
- C. HMG CoA lyase
- D. 3-hydroxybutyrate dehydrogenase

2. Ketolysis does not occur in the liver because it lacks:

- A. Thiophorase
- B. Thiolase
- C. 3-hydroxybutyrate dehydrogenase
- D. HMG CoA Lyase

3. Which one of the following is the first response to hypoglycemia?

- A. Insulin production decreases
- B. Epinephrine and Glucagon production increases
- C. Growth hormone production increases
- D. Cortisol production increases

