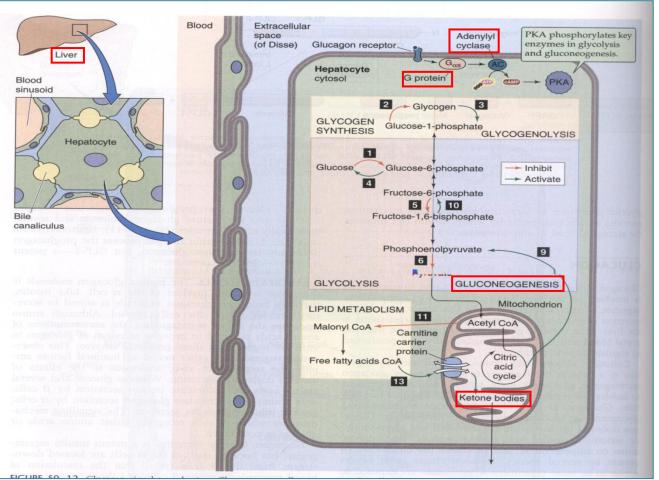

ENDOCRINE BLOCK PHYSIOLOGY TEAM 431

Blue : Team notes Red : Important

Physiology of Pancreas and Insulin – part II


<u>A. Glucagon</u>

- A 29-amino-acid polypeptide hormone that is a potent hyperglycemic agent

- Produced by α cells in the pancreas

Glucagon Signaling

<u>Hypoglycemia</u> → Glucagon → <u>liver</u> (has no action on the muscles) → <u>G-protein</u>→Glycogenolysis + Gluconeogenesis + Lipid oxidation (to produce keto acids)+Release of glucose to the blood from liver cells

• <u>Synthesis</u>

- DNA in α cells (chromosome 2) \rightarrow mRNA \rightarrow Preproglucagon \rightarrow proglucagon \rightarrow glucagon

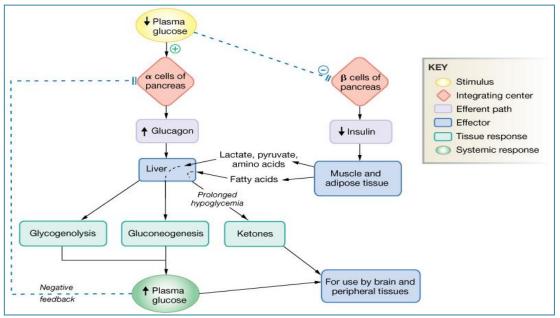
• Factors Affecting Glucagon Secretion:

- Stimulators:

- ✓ ↓ Blood glucose
- ✓ ✓ ✓ ✓ ✓ Serum amino acids (arginine, alanine) (Amino acids increase **both** insulin and glucagon).
- ✓ Sympathetic stimulation (Because you need energy).
- ✓ Stress (Because you need energy).

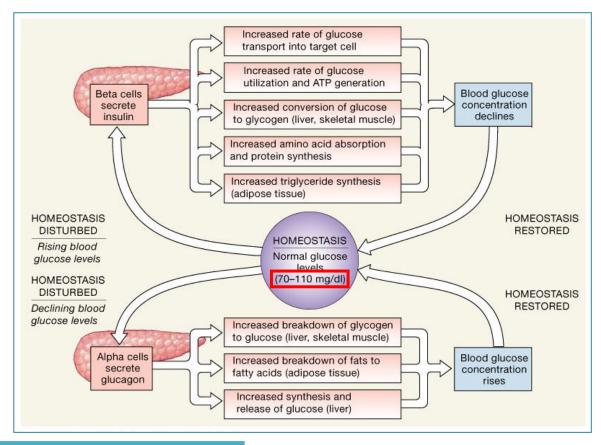
✓ **Exercise (Exercise** helps in making the insulin-dependent **GLUT-4** to be expressed on the cell membranes without the need for the insulin!!).

- Inhibitors:


- ✓ Somatostatin (inhibit **both** insulin and glucagon)
- ✓ Insulin (glucagon **stimulates** insulin secretion BUT insulin **inhibits** glucagon secretion)
- ✓ ↑ Blood glucose

• <u>Glucagon Actions</u>

- Its major target is liver :


- ✓ Glycogenolysis
- ✓ Gluconeogenesis
- ✓ Lipid oxidation (fully to CO2 or partially to produce keto acids "ketone bodies").
- ✓ Release of glucose to the blood from liver cells

• <u>Glucagon Action on Cells</u>:

Cell of origin	Alpha cells of pancreas	
Chemical nature	29-amino acid peptide	
Biosynthesis	Typical peptide	
Transport in the circulation	Dissolved in plasma	
Half-life	4–6 minutes	
Factors affecting release	Stimulated by plasma [glucose] < 200 mg/dL, with maximum secretion below 50 mg/dL; ↑ blood amino acids.	
Target cells or tissues	Liver primarily	
Target receptor/second messenger	G protein-coupled receptor linked to cAMP	
Whole body or tissue action	↑ Plasma [glucose] by glycogenolysis and gluconeogenesis; ↑ lipolysis leads to ketogenesis in liver	
Action at molecular level	Alters existing enzymes and stimulates synthesis of new enzymes	
Feedback regulation	↑ Plasma [glucose] shuts off glucagon secretion	
Other information	Member of secretin family along with VIP, GIP, and GLP-1	

• <u>The Regulation of Blood Glucose Concentrations</u>:

B. Diabetes

- Diabetes is probably the most important metabolic disease.

- It affects every cell in the body and affects carbohydrate, lipid, and protein metabolism.

- Characterized by the polytriad:

✓ **Polyuria** (excessive urination) (high glucose filtrated \rightarrow osmotic effect \rightarrow drag water \rightarrow osmotic diuresis)

✓ **Polydipsia** (excessive thirst) (1. due to polyuria 2. Cells of the body are dehydrated because; the intracellular water has been dragged extracellularly by osmosis).

✓ **Polyphagia** (excessive hunger) (1. ↓ insulin → activate the satiety center <the only center in the brain that is insulin-dependent>, 2.due to glucose loss in the urine → loss of calories).

✓ Weight loss in type 1 (due to fat lipolysis by hormone sensitive lipase).

	<u>Type 1 Diabetes</u>	<u>Type 2 Diabetes</u>	
<u>Affects</u>	Children, Usually before 20	Adults, Usually after 30	
<u>Cause</u>	inadequate insulin secretion by immune-mediated selective destruction of β cells	defect in insulin action by impaired insulin receptors or second messenger system	
<u>Treatment</u>	insulin injection	diet, lifestyle, OHA, or insulin injections	
<u>Symptoms</u>	Polyuria - Polydipsia – Polyphagia – Hyperglycemia - Ketoacidosis (IDDM) – Hyperlipidemia - Muscle wasting - Electrolyte depletion - glycosuria		

• Diabetes Mellitus Type I :

- Caused by an immune-mediated selective destruction of $\boldsymbol{\beta}$ cells

- β cells are destroyed while α cells are preserved:

No insulin \rightarrow high glucagon \rightarrow high production of glucose and ketones by **liver**

- ↑ Glucose & ketones \rightarrow osmotic diuresis
- ↑ Keto acids → diabetic ketoacidosis (coma)

• Diabetes Mellitus: Type II :

- More common in some ethnic groups
- Insulin resistance keeps blood glucose too high
- Chronic complications: atherosclerosis, renal failure & blindness

• (the doctor said "I don't think I will ask about this")

<u>Glucose Tolerance Test</u>: - Fasting blood glucose "or sugar" (FBG)

- Oral glucose tolerance test (OGTT)

- Both are require that the patient fast for at least 8 hours (ideally 12 hr) prior to the test.

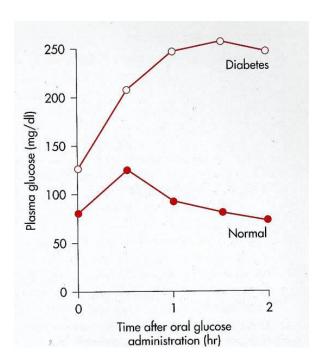
• <u>The oral glucose tolerance test (OGTT)</u>:

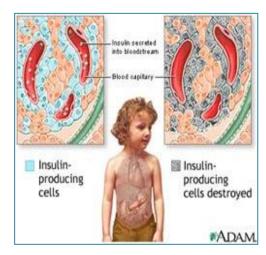
- FBG
- Blood is then taken 2 hours after drinking a special glucose solution

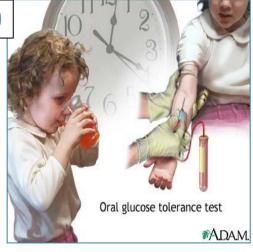
- Following the oral administration of a standard dose of glucose, the plasma glucose concentration **normally** rises but returns to the fasting level within 2 hours.

- If insulin activity is reduced, the plasma glucose concentration takes longer than 2 hours to return to normal and often rises above 200 mg/dl.

- Measurement of urine glucose allows determination of the renal threshold for glucose.


• <u>The following results suggest different</u> <u>conditions:</u>


- Normal values:


- ✓ Fasting <100 mg/dl</p>
- \checkmark 2hr < 140 mg/dL
- Impaired glucose tolerance
- ✓ 2hr PPG = 140 199 mg/dL

- Diabetes

- ✓ FPG ≥ 126 mg/dl
- ✓ 2hr PPG levels ≥200 mg/dL

-<u>Diabetes Mellitus (DM)</u>

Organs/tissue involved	Organ/tissue responses	Resulting condition of:		Signs and symptoms
organs/ussue involveu	to insulin deficiency		Urine	
	Decreased glucose uptake and utilization	Hyperglycemia	Glycosuria Osmotic diuresis	Polyuria - dehydration - soft eyeballs
	Glycogenolysis			Polydipsia Fatigue Weight loss Polyphagia
	Protein catabolism and gluconeogenesis			
	Lipolysis and ketogenesis	Lipidemia and ketoacidosis	Ketonuria Loss of Na ⁺ , K ⁺ ; electrolyte and acid-base imbalances	Acetone breath Hyperpnea Nausea/vomiting/ abdominal pain Cardiac irregularities
= Muscle 🧿 = /	Adipose tissue 🛯 = Liver			Central nervous system depression; coma

Summary

A- Glucagon:

- A 29 amino-acid polypeptide hormone, hyperglycemic agent, produced by α cells of pancreas.
- Synthesis: DNA on chromosome 2 of α cells \rightarrow mRNA \rightarrow preproglucagon \rightarrow proglucagon \rightarrow glucagon
- Stimuli for glucagon secretion: ↓ blood glucose, ↑ serum amino acid (arginine and alanine), sympathetic, stress, exercise.
- Inhibitors: somatostatin, insulin, \uparrow blood glucose.
- Actions (primarily in liver): Glycogenolysis, Gluconeogenesis, Lipid oxidation, and release of glucose to the blood from liver
- Target receptor: G coupled-protein receptor linked to cAMP

B- Diabetes:

- Metabolic disease that affects every cell in the body, and carbohydrate, lipid, and protein metabolism.
- Characterized by: Polyuria, Polyphagia, Polydipsia.
- Types:

	<u>Type 1</u>	<u>Type 2</u>	
<u>Affects</u>	Children, usually before 20	Adults, usually after 30	
<u>Cause</u>	Inadequate insulin secretion by immune-mediated selective destruction of β cells	defect in insulin action by impaired insulin receptors or second messenger system	
<u>Treatment</u>	insulin injection	diet, lifestyle, OHA, or insulin injections	
<u>Symptoms</u>	Polyuria - Polydipsia – Polyphagia – Hyperglycemia - Ketoacidosis (IDDM) – Hyperlipidemia - Muscle wasting - Electrolyte depletion - glycosuria		

OGTT: 8hr fasting → FBG → drinking special glucose solution & measuring every 30 min for 2hr.

Questions

Q1- Which one of the following stimulates glucagon secretion:

- A) Somatostatin
- B) Insulin
- C) LOW blood glucose
- D) HIGH blood glucose

Q2- Which one of the following is the target receptor for glucagon:

- A) G coupled-protein receptor linked to cGMP
- B) Tyrosine kinase
- C) Intracellular receptor
- D) G coupled-protein receptor linked to cAMP

Q3- Which of the following does NOT belong to type 2 diabetes:

- A) Caused by defect in insulin action
- B) Affects adults
- C) Causes diabetic ketoacidosis
- D) Managed by changing diet & life style.

Q4- In which situation of OGTT the patient is considered diabetic:

- A) FBG < 100 mg/dl
- B) FBG 100 126 mg/dl
- C) 2 hours PPG 140-199 mg/dl
- D) 2 hours PPG \geq 200 mg/dl