Biochemistry Practical

Biochemistry Teamwork

Khalid Al-Khamis	Al-Anood Asiri
Abdulaziz Al-Shamlan	Lama Mokhlis
Abdullah Al-Mazyad	Noha Khalil
Turki Al-Otaibi	Reem Al-Mansour
Osamah Al-Jarallah	Nuha Al-Furayh
Saud Al-awad	Jumana Al-Shammari
Khaled Almohaimede	Deema Jomar
Meshal Al-Otaibi	Fatimah Abdulkarim
	Lamia Alghamdi

Done by: Lama Mokhlis & Khalid Al-Khamis

Biochemistry practical "Estimation of blood glucose in DM".

(Dr.Sumbul said the most important thing you need to know is the test for DM. The calculations are not the important <u>but they may come</u>)

Inrtoduction:

- Blood glucose is normally maintained within a narrow range under various conditions by insulin, glucagon and other hormones
- The most common disorder of carbohydrate metabolism is diabetes mellitus characterized by high blood glucose level
- Measurement of blood glucose is one of the most commonly performed tests in clinical biochemistry labs of hospitals
- Signs and symptoms of DM: Hyperglycemia, Polyuria and glucosuria, Polydipsia and Polyphagia.

Comparison between type 1 and type 2 DM

	Type 1 Diabetes	Type 2 Diabetes
Age of onset	Usually during childhood or puberty	Frequently after age 35
Prevalence %	10% of diagnosed diabetics	90% of diagnosed diabetics
Defect or deficiency	β cells are destroyed, eliminating insulin production	Insulin resistance combined with inability of β cells to produce appropriate quantities of insulin
Ketoacidosis	Common	rare
Plasma Insulin	Low to absent	High early in disease; low in disease of long duration
Treatment	Insulin is always necessary	Diet, exercise, oral hypoglycemic drugs, +/-insulin

Laboratory tests for glucose (V.imp)

1) Fasting plasma glucose (FPG): is measurement of plasma glucose after 12 hours of fasting (no caloric intake)

Normal level: 3.9-5.6 mmol/l (70-100 mg/dL).

2) OGTT (Oral Glucose tolerance Test) and 2-hour post-prandial test:

Serial measurement of plasma glucose before and after a specific amount of glucose given orally (75g glucose)

3) HEMOGLOBIN A_{1C}:

- ** It is produced due to non-enzymatic glycosylation of hemoglobin.
- ** It is used to estimate glycemic control in the last 1-2 months
- ** Recommended for the detection of type 2 DM
- ** HBA_{1C} and fasting plasma glucose are effective in diagnosing diabetes
- ** Cut-off point of ≥ 6.5 % is used to diagnose diabetes

NOTE: When fasting plasma glucose or 2-hour postprandial glucose level is above normal but below diabetic level **——— impaired glucose tolerance**

Categories of increased risk for diabetes*

FPG 100-125 mg/dL (5.6-6.9 mmol/L) [IFG]

2-h PG on the 75-g OGTT 140-199 mg/dL (7.8-11.0 mmol/L) [IGT]

A1C 5.7-6.4 percent

FPG: fasting plasma glucose; IFG: impaired fasting glucose; PG: post glucose; OGTT: oral glucose tolerance test; IGT: impaired glucose tolerance; A1C: glycated hemoglobin.

Criteria for the diagnosis of diabetes

1. A1C ≥6.5 percent. The test should be performed in a laboratory using a method that is NGSP certified and standardized to the DCCT assay.*

OR

2. FPG ≥126 mg/dL (7.0 mmol/L). Fasting is defined as no caloric intake for at least 8 h.*

OR

3. Two-hour plasma glucose ≥200 mg/dL (11.1 mmol/L) during an OGTT. The test should be performed as described by the World Health Organization, using a glucose load containing the equivalent of 75 g anhydrous glucose dissolved in water.*

OR

 In a patient with classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma glucose ≥200 mg/dL (11.1 mmol/L).

A1C: glycated hemoglobin; NGSP: National glycohemoglobin standardization program; DCCT: Diabetes control and complications trial; FPG: fasting plasma glucose; OGTT: oral glucose tolerance test.

* In the absence of unequivocal hyperglycemia, criteria 1-3 should be confirmed by repeat testing.

Reprinted with permission from: American Diabetes Association. Standards of Medical Care in Diabetes Care 2010; 33:S11.

Copyright © 2010 American Diabetes Association.

Diagnosis	Mg/dL	Mmol/L
Normal	Below 100	Below 5.6
Impaired Glucose Tolerance	100 - 125	5.6 - 6.9
Diabetes Mellitus	FPG more than 126 OGGT more than 200 Rondom test more than 200	FPG more than 7.0 OGTT more than 11.1 Random test more than 11.1

- You maybe asked about the interperation of the result or the diagnosis.
- IF you answers a question in (mmol/L), you should continue with the same measuring unite
- You are free to choose between (mg/dL) & (mmol/L).

Blood glucose Assay: (The doctor said we will not ask you anything about the procedure; just know the equation in case they ask you to calculate.)

^{*}Blood glucose is detected by a series of enzymatic reactions that ultimately form a colored product.

^{*}The intensity of color is proportional to the amount of glucose present in blood

^{*}Color intensity is determined spectrophotometerically by measuring the absorbance of the colored solution at a wavelength of 546nm

Calculation

Glucose conc (mmol/l) = (Normal >> 3.9-5.6 mmol/L (70-100 mg/dL)

Ketone Bodies:

- Acetone (exhaled by lungs, gives characteristic smell in diabetic ketoacidotic patients)
- Acetoacetate
- β-Hydroxybutyrate
- Produced by the liver and utilized for energy production by peripheral tissues

Ketone bodies are detected in urine using >>> Urine dipstick.

Urinalysis using dipstick: (Not imp)

Principle:

- **Dipsticks are plastic strips impregnated with chemical reagents which react with specific substances in the urine to produce color-coded visual results.
- **They provide quick determination of pH, protein, glucose and ketones. The depth of color produced is proportional to the conc. of the substance in urine.
- **Color controls are provided against which the actual color produced by the urine sample can be compared.

Procedure:

- Dip the dipstick in the urine sample provided
- Remove it immediately
- Wipe off excess urine
- Read the color produced within 60 seconds
- Compare color changes with the control charts provided