[lecture 6]

BODY FLUIDS: Cerebrospinal Fluid

- It is essential for the physical protection of the
- The physical & chemical analysis of CSF is esse for diagnosis of certain diseases.

Med432 Biochemistry Team /

Done By : Mazen AlOtaibi

reviewed by: Manar AlEid

CSF definition:

The liquid surrounding the brain and spinal cord. It **flows in subarachnoid area** (the space between the arachnoid & Pia matter)

Physical support & protection Provides a <u>controlled</u> chemical environment → nutrient supply & waste removal Intra- & extracerebral transport: Neuroendocrine function

CSF Formation & Circulation

CSF is formed at the <u>choroid plexuses</u> & by the cells lining the <u>ventricles</u>. Normal blood brain barrier is important for the normal chemistry results of CSF

Rate of formation: 500 ml/day

Mechanism of formation:

Selective <u>ultrafiltration</u> of plasma , <u>Active secretion</u> by epithelial membranes

Mechanism of excretion (absorption): Excretion volume = production volume -> constant CSF volume

Absorption occurs at the arachnoid villi protruding through the Dura to the venous sinuses of the brain → bloodstream

CSF Specimen Collection :

- Obtained by <u>lumbar puncture</u> (At the interspace L3-4, or lower)
- Using <u>aseptic</u> technique
- CSF is <u>separated</u> into 3 aliquots:
 - for chemistry & serology
 - for microbioloy
 - for cell count
- <u>Immediate</u> analysis
- It's a <u>precious</u> sample: Preserve any remaining sample

Contraindications for performing lumbar puncture:

- 1. Bleeding diathesis
- 2. Increased intracranial pressure
- 3. Infection at site of needle insertion

Method of CSF Sampling

Traumatic tap (damage to blood vessel during specimen collection) \rightarrow blood in CSF

Indications for laboratory investigation of CSF:

- 1. CNS *infection*
- 2. <u>Demyelinating</u> diseases
- 3. CNS <u>Malignancy</u>
- 4. <u>Hemorrhage</u> in CNS

Xanthochromia =

of CFS

yellowish appearance

Hyperbilirubinemia (bilirubin > 20 mg/dL).

- CSF [glucose] is ~ 2/3 that of plasma (50 80 mg/dl)
- *plasma sample* must be obtained ~ 2-4 hr before CSF sample
 - In hypoglycemia: [CSF glucose] may be very low
 - In hyperglycemia: [CSF glucose] is raised.
- Measure CSF [Glucose]:
 - immediately
 - or preserve the specimen with and *antiglycolytic* e.g. fluoride ion

↓CSF [glucose] (hypoglycorrhachia):

LL.,

S

2

ш

S

LUCO

J

Abnormal

1.Disorder in carrier-mediated transport

• e.g. TB meningitis, sarcoidosis

2.Active metabolism of glucose by cells or organisms:

• e.g. acute purulent, amebic, & fungal meningitis

3.Increased metabolism by the CNS

• e.g. by CNS neoplasm

In <u>viral meningitis</u> CSF [glucose] is usually normal

Biochemistr.

• Proteins, mostly albumin are found in the CSF (0.15-0.45 g/L)

• Source of CSF proteins:

- 80% from plasma by ultrafiltration
- 20% from intrathecal synthesis

PROTEIN in CSF Abnormal

- Must be compared to the serum [protein]
- Useful nonspecific indicator of pathological states:
 - Lysis of contaminant blood (traumatic tap)
 - ↑ premeability of the epithelial membrane due to:
 - Bacterial or fungal infection
 - Cerebral hemorrhage

↑ production by CNS tissue in:

- Multiple sclerosis (MS)
- Subacute Sclerosing Panencephalitis (SSPE)

• Obstruction e.g. in:

- Tumors
- Abscess

CON. PROTEIN in CSF

CSF Albumin

- Albumin is produced solely in the liver

What to do if \uparrow CSF [protein] was detected?

- Perform electrophoretic separation
- If multiple banding of the IgG band is detected (oligoclonal bands):
 - o MS
 - \circ SSPE
 - \circ Inflammatory diseases

CSF Immunoglobulin

- CSF IgG can arise: from plasma cells within CSF & from the blood through BBB
- ↑CSF [IgG] without concomitant
 ↑ in CSF [Alb] suggests local
 production of IgG:

 \circ multiple sclerosis (MS)

 \circ subacute sclerosing panencephalitis (SSPE)

OTHER CHEMICAL COMPONENTS OF CSF

- CSF [Calcium], [Potassium] & [Phosphates] are lower than their levels in the blood
- CSF [Chloride] & [Magnesium] are higher than their levels in the blood
 - Abnormal CSF [Chloride]
 - marked $\downarrow \downarrow$ in acute bacterial meningitis
 - slight \downarrow in viral meningitis & brain tumors

NORMAL COMPOSITION OF CSF

Appearance	Clear ,Colorless	
Lymphocytes	<5/mm ³	
Polymorphs	Nil	
рН	7.4	
Total Volume	100 - 150 ml	
Daily Secretion	450 - 500 ml	
Specific Gravity	1.006 - 1.007	
Protein	0.15 – 0.45 g/L	
Glucose	50 - 80 mg/dL (2.8-4.2 mmol/L) (>50% plasma level)	
Chloride	115 - 130 mmol /L	
Coleium		
Calcium	1.0 - 1.40 mmol/L	
Phosphorus	1.0 - 1.40 mmol/L 0.4 - 0.7 mmol/L	
Phosphorus Magnesium	1.0 - 1.40 mmol/L 0.4 - 0.7 mmol/L 1.2 - 1.5 mmol/L	

Not for exam just for your reference

ABNORMAL FINDINGS OF CSF IN SOME PATHOLOGICAL CONDITIONS

Parameter The numbers are not important	Condition		
	Bacterial Meningitis (pyogenic)	Tuberculous Meningitis	Viral Meningitis
Appearance	Often turbid	Often fibrin web	Usually clear
Predominant cell	Polymorphs	Mononuclear	Mononuclear
Cell count/mm ³	90-1000+	10-1000	50-1000
Bacteria	In smear & culture	Often none in smear	None seen or cultured
Protein (0.15-0.45 g/L)	>1.5 (↑ ↑)	1-5 (↑ ↑)	<1 (Normal)
Glucose (2.8-4.2 mmol/L)	<1/2 plasma (↓ ↓)	<1/2 plasma (↓ ↓)	>1/2 plasma (Normal or slightly \downarrow)
Chlorides (115 - 130 mmol/L)	$\downarrow \downarrow$	$\downarrow \downarrow$	Normal or ↓

Finally

• **Otorrhea**: leakage of CSF from the ear

• **Rhinorrhea**: leakage of CSF into the nose

How to identify it as CSF?

• Measure β -transferrin (a protein unique to the CSF)

1) The appearance of CSF in Bacterial Meningitis is?

a) Turbid b) Fibrin web c) Clear d) None of the above

2) Xanthochromia indicates which of the following?

- a) subacute sclerosing panencephalitis (SSPE)
- b) sarcoidosis
- c) Subarachnoid hemorrhage
- d) hyperglycemia

3) In Bacterial Meningitis Glucose CSF level shows :

a) decrease b) increase c) normal

4) When would Xanthochromia indicate hemorrhage :

a) If you exclude Hyperbilirubinemiab) bright red color hemoglobin pigmentsc) RBCS in decreasing numberd) none of the above

5) In Bacterial Meningitis Protein CSF level shows :

a) increase b) slight decrease c) normal

Answers

Biochemistry

Team

If you find any mistake, please contact us:) Biochemistryteam@gmail.com

