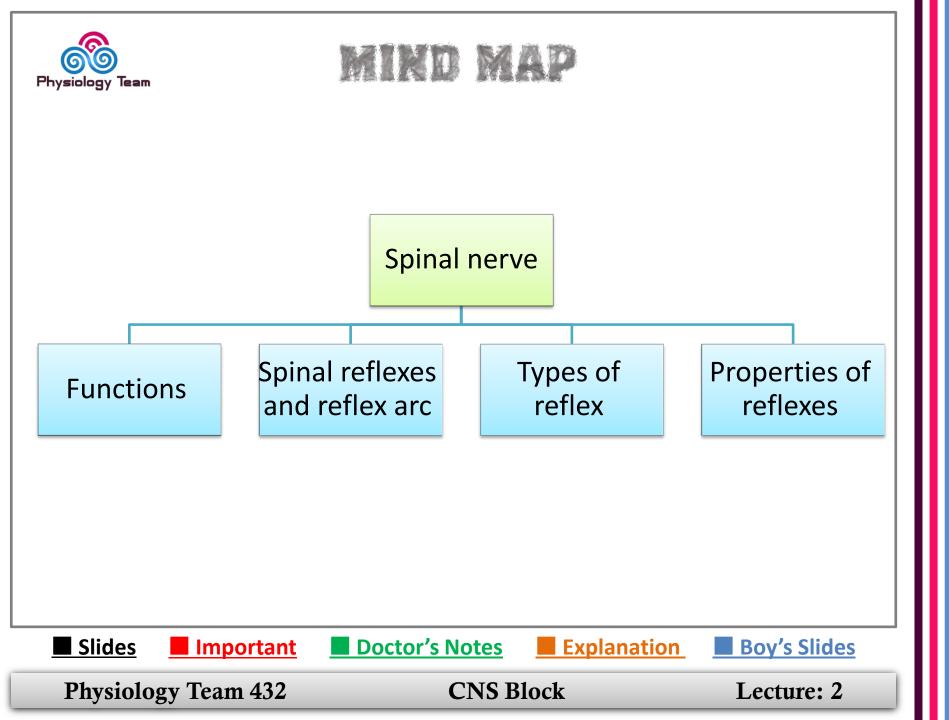


Lecture: 2

Spinal Cord Functions & Spinal Reflexes

Done By: Leena Al-Yahya

Reviewed By: Mohammed Jameel



At the end of this lecture, student should be able to describe:

- ❖ Describe the functions of spinal cord .
- Understand the physiological role of the spinal cord as a pathway for tracts.
- ❖ Explain functional role of tracts pass in spinal cord .
- ❖ Describe the definition of a spinal reflex and reflex arc components .
- ❖ Describe the most important <u>types of spinal cord reflexes</u> as withdrawal reflex & crossed extensor reflex .
- Describe <u>properties of spinal cord reflexes</u> as <u>irradiation</u>, <u>recruitment</u>, <u>synaptic delay</u> and <u>after discharge</u>.

■ Slides ■ Important ■ Doctor's Notes ■ Explanation ■ Boy's Slides

Physiology Team 432 CNS Block Lecture: 2

Spinal Nerves

Spinal Nerves: ❖ The spinal cord has 31 pairs of spinal nerves

(• 8 cervical / • 12 thoracic / • 5 lumbar / • 5 sacral / • 1 coccygeal)

Each spinal nerve has:

Afferent fibers

 Carrying Sensory information from receptor of skin, muscles and joints to the CNS.

Efferent fibers

 Carrying Motor commands from <u>CNS</u> to <u>muscles</u>.

❖ The spinal cord has:

The Dorsal (Posterior) root

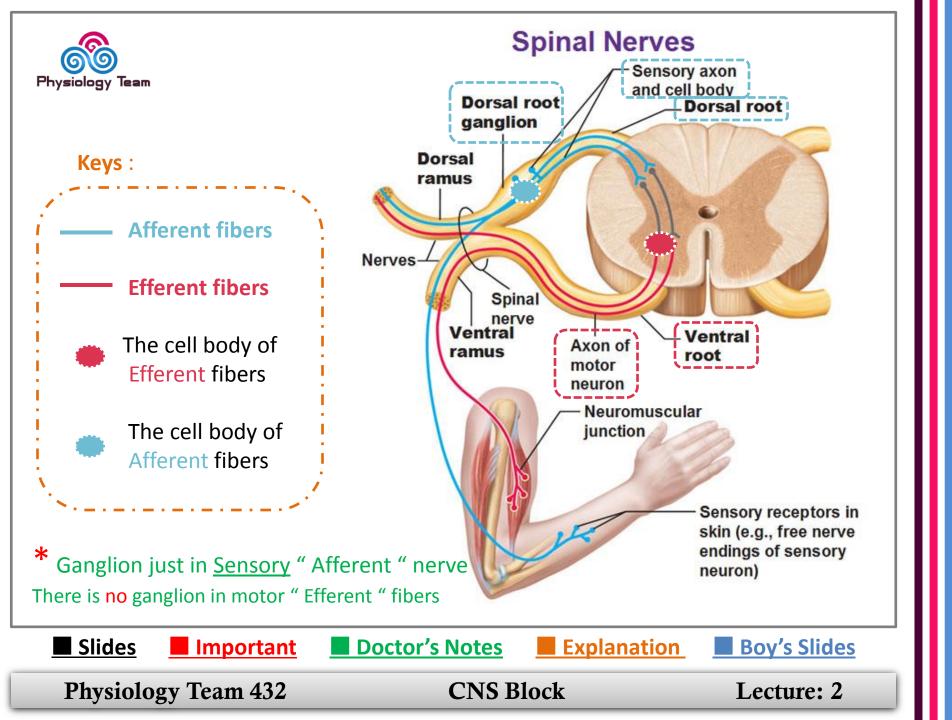
- Contains **Afferent** (**Sensory**) nerves coming from receptors .
- The cell body of these neurons located in dorsal posterior root ganglion (DGR).

The ventral (Anterior) root

- Carries **Efferent** (**Motor**) fibers
- The cell body is located in the ventral (anterior) horn of spinal cord.

Slides

Important


Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

Functions of spinal cord

Executing brain **motor** commands

"Descending motor tracts > spinal efferent motor nerves > skeletal muscles "

Carrying **sensory** information

"Receptor > Spinal afferent sensory nerves > ascending sensory tracts > Brain "

Generating Spinal Reflexes

Carrying tracts Reaching Conscious

Brain Level "cerebral cortex "

1- Dorsal Column Tracts (Gracile &Cuneate)
Fine discriminative touch, vibration,
position senses, proprioception&
stereognosis

2- Lateral Spinothalamic Tract for pain and temperature .

3- Anterior Spinothalamic Tract for crude touch, pressure.

Carrying tracts <u>Not</u> reaching Conscious Brain Level "subconscious level"

1- Spinocerebellar Tracts carry fibers to cerebellum for proprioceptive information (sense of joint position& movements) for posture control & coordination of movement

اللمس الدقيق = Fine discrimination

اهتزاز =vibration /اللمس الغير دقيق كالقطنة = Crude touch

الاحساس بأماكن الجسم بالنسبة لبعضها البعض = Proprioception

التعرف على شيء عن طريق حاسة اللمس = stereognosis

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

Spinal reflexes and Reflex arc

What is a reflex? = Functional unit of CNS -automatic ,involuntary response to a stimulus (Doesn't reach conscious level) ...

e.g: pinprick causes withdrawal. انسحاب القدم لا إراديا وبسرعة عند المشي على الإبرة

Reflex Arc: (the pathway of reflex). The basic unit of a reflex is the reflex arc

* It is the pathway of Sensory information to spinal cord to cause spinal reflex, it

is formed of:

1-Sense organ (receptor).

2-An afferent sensory neuron.

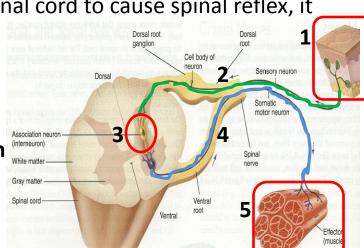
3- Center/ending of the afferent sensory neuron within the spinal cord on one or more synapses (interneurons "in gray matter "in S.C located in one or more spinal cord segments).

• Such interneurons can be excitatory or inhibitory .

4-An efferent somatic motor neuron (ventral horn = anterior horn cells).

5-An effector organ (skeletal muscle).

■ Slides ■ Important



Explanation

Boy's Slides

Physiology Team 432

CNS Block

Components of reflex arc

Afferent neuron

Sensory afferent enter spinal cord via dorsal(posterior) root, ends at same segment or ascend to higher segments

Afferent neurons undergo:

- 1- **Divergence** to help to spread a <u>single stimulus</u> to a <u>wide area</u> of the spinal cord,
- 2- Convergence to help the process of <u>spatial summation</u>. (multiple stimuli summate & collect together at the same time "concentration of information=strong response")

Interneurons

are small cells in grey matter of spinal cord connecting afferent to efferent (excitatory or inhibitory).

Two types of circuits formed by inter neurons

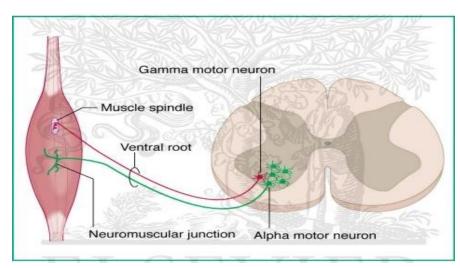
- 1- parallel: afferent & efferent are parallel.
- 2- reverberating circuits:
 Impulse from one neuron feed back to re-stimulate itself for long time as the fibers turn back on the same neurons
 -What is its Value? Prolong discharge of same neuron by single stimulation.

Efferent neuron

- -Anterior Horn Cells (Motor neurons) of spinal cord supplying skeletal muscle:
- 1. alpha motor neurons:large cells, with large
 myelinated fibers (axons)
 form 70% of ventral root –
 supply Extrafusal muscle
 fibers
- 2. Gamma motor neurons
 :- smaller cells- with small
 axons form 30 % of ventral
 root supply intrafusal ms
 fibers = muscle spindle

The Alpha Motoneurons are called:-

the Final Common Pathway "final station that gave us the final discharge "


-inputs come from spinal & superspinal centers converge on them(up to 10000 synapses can be present on one alpha motorneuron)

They receive signals from:

1-excitatory and inhibitory signals from same segment of S.C

2-excitatory and inhibitory signals from **other segments of S.C**

3-supraspinal descending tracts from **brainstem** and **cerebral cortex**

* all these signals are integrated at the Alpha Motorneurons then they send integrated activity to muscles to adjust: posture, voluntary activity & coordinate actions of muscle.

-What is Motor Unit ? = motor neuron + the group of skeletal muscle fibers it controls

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

Types of reflexes

According to number of neurons:-

Monosynaptic

Sensory axon (afferent)synapse directly with anterior horn cell- Ex. Stretch reflex
"Directly with alpha motor neurons, there are no interneurons "It is produced by co-activation of

Polysynaptic

Sensory axon (afferent)synapse with one or more interneuron

Ex. Withdrawal - abdominal reflexes - visceral

-According to site of the receptor:-

(A)Deep Reflexes

alpha & gamma motorneurons

(1) Stretch Reflexes (Tendon jerks) "not in tendon! In muscle", they are <u>monosynaptic</u>: such as <u>knee-jerk</u> (patellar reflex) and <u>ankle jerk</u>. The receptor for all these is the muscle spindle "is located deep within the muscle itself (2) Inverse Stretch Reflex (Golgi Tendon organ reflex), <u>polysynaptic</u>: The receptor is called Golgi Tendon Organ present deep in the muscle tendon

B) Superficial Reflexes

polysynaptic reflexes. The receptor are superficial in the skin.

Examples are:

- -Withdrawal
- -abdominal reflexes
- -plantar reflex

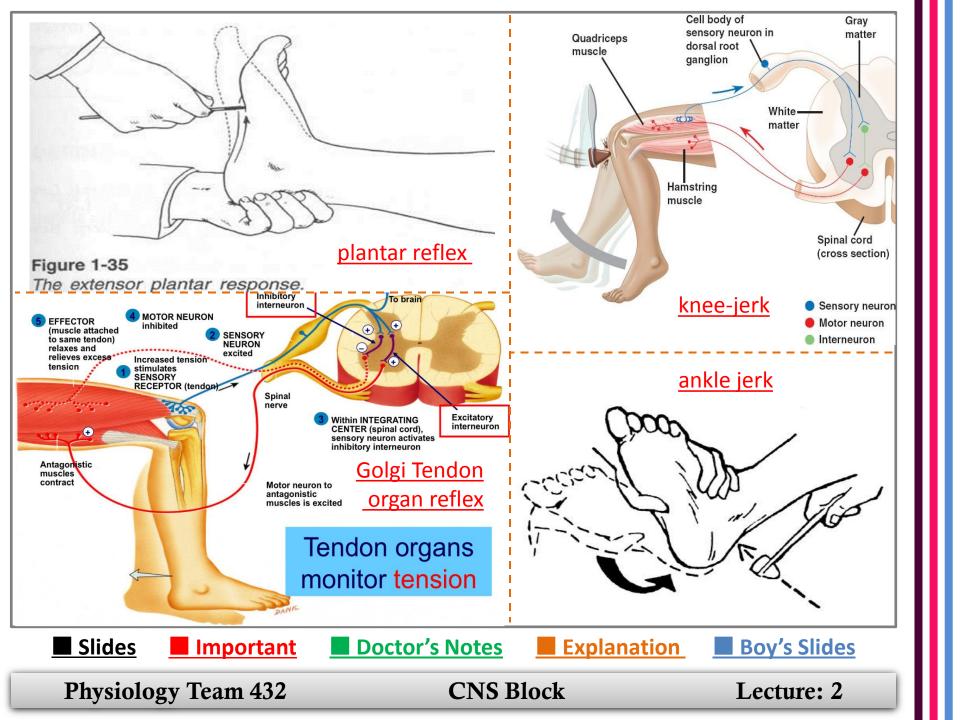
C) Visceral

by stimulation of receptors in wall of viscera As:

Micturition, defecation

Slides

Important


Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

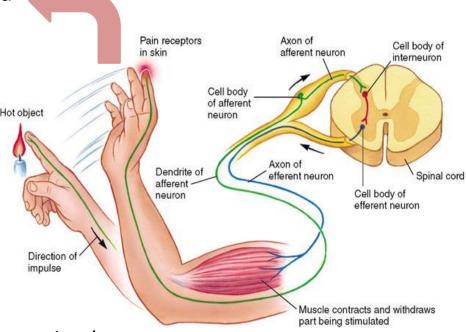
CNS Block

Withdrawal reflex

Properties of reflexes: 1-Reciprocal inhibition 2-Irradiation
3-Recruitment 4-After discharge 5-central delay & reflex time

Withdrawal reflex(flexor reflex): -A superficial-polysynaptic-spinal reflex.

impulses to SC in <u>A delta</u> or <u>C fibers</u>
(types of sensory afferent that
varies according to pain type)


Hot ob

interneurons (=polysynaptic)

anterior horn cells

stimulate hand flexor muscles

move the hand away from the injurious stimulus.

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

Withdrawal reflex

characterized by :_

1-Reciprocal inhibition or reciprocal innervation)

stimulation of flexors muscle accompanied by inhibition of extensor through inhibitory interneurons

"Reflex contraction of an agonist muscle is accompanied by inhibition of the antagonist"

2- Crossed extensor reflex

Flexion and withdrawal of the stimulated limb > extension of the opposite limb (to become a supporter) occurs with strong stimulus, Because it depends on the intensity of stimulus .

-Reciprocal innervations

occurs also in <u>crossed extensor</u>
<u>reflex</u>. (excitation of flexors
accompanied with inhibition of
extensors)

it is an Antigravity Reflex

3- IRRADIATION

spread of impulses up & down to different segments and motor neurons in the S.C

A strong stimulus in sensory afferent <u>irradiate</u> to many segments of S.C due to **divergence**.

The extent of the response in a reflex <u>depends on the</u> intensity of the stimulus.

- -Weak stim- weak flexion of limb
- Strong stim-withdrawal of affected limb &

extension of opposite limb. (as in crossed extensor reflex)

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

Withdrawal reflex

characterized by :_

4- RECRUITMENT

Gradual activation "by single stimulus" of more number of motor neurons (AHCS)on stim of afferent nerve in a reflex arc by maintained, repetitive stimulus

Cause / 1-different conduction
velocities of afferents
2-different number of
interneurons with short & long
pathways to the motor neurons
(AHCs)

(impulses do not reach AHCs at same time but reach them gradually, so maintained stimulation allow more neurons to be stimulated)

5- After-discharge

It means prolonged discharge of AHCs after stoppage of afferent stimulation. "neurons continue to sent impulses" (this cause maintained reflex action & response continue for some time after cessation of stimulus) cause by: reverberating circuits Value: prolong the response

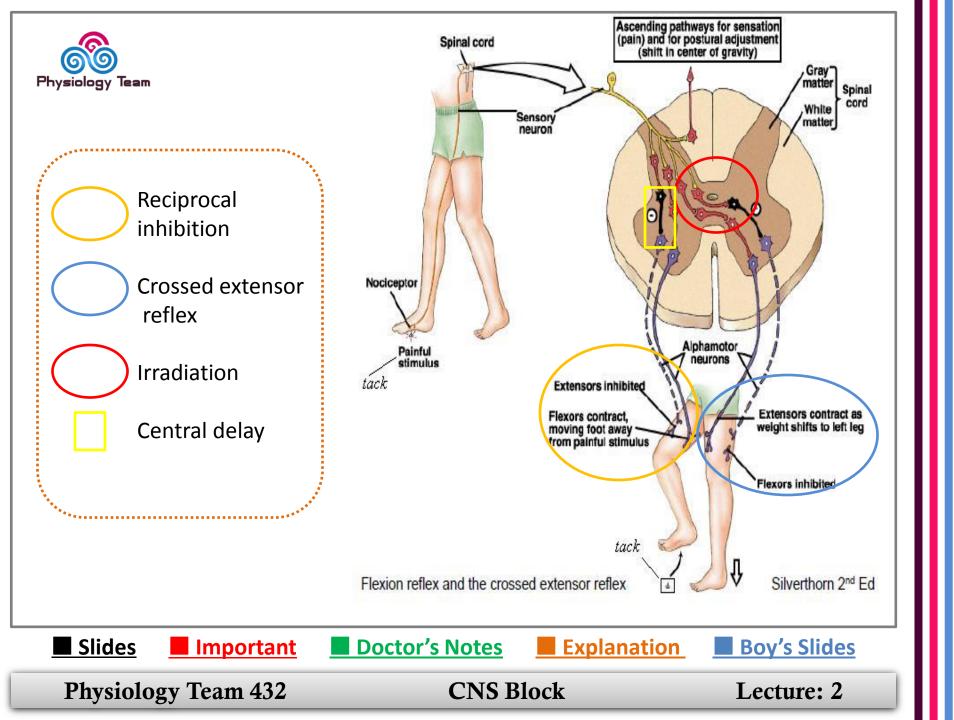
مثال: قرص بعض الحشرات يستمر

تأثيره لفترة "itching"

6- Central delay

"center=interneurons": time of reflex to pass through neurons of CNS(S.C) -equals **0.5 ms/synapse** (SO it is long in polysynaptic R) -> 2 ms in the withdrawal R **If it was 20 ms, how many neurons/synapses passed? =20/0.5=4-Number of synapses= central delay /0.5ms -Reflex Time = Central Delay + Time spent in conduction of impulses along the afferent and efferent

Slides



nerves

SUMMARY

- The spinal nerve has afferent "sensory" & efferent "motor" fibers.
- ❖S.C has 3 functions: execution motor command/carrying sensory info/generating spinal reflexes.
- *Reflex is functional unit of CNS, <u>automatic</u>, <u>involuntary response to a stimulus</u>.
- *Reflex arc is the basic unit of a reflex "pathway" its component: Afferent n(Difergence & convergance) interneuorons (parallel-reverberating circuits) -efferent n (Alpha & gamma m.n)
- ❖ Types of reflexes *number of n*: Monosynaptic&Polysynaptic .. *Site*: Deep R/Superficial R /Visceral
- ❖ Deep R: <u>Knee-jerk & Ankle jerk</u> *monosynaptic (in muscle spindle) --- <u>Golgi T.O.R</u> *polysynaptic (muscle tone)
- ❖ Properties of reflexes: 1-Reciprocal inhibition * flexor ms & inhibition of extensor*
- 2-Irradiation *strong stim * 3-Recruitment *gradual activation of motor neurons*
- 4-After discharge *prolong discharge after stoppage of afferent stim *

5-central delay * **0.5 ms/synapse *** ...

Reflex time = central delay + afferent & efferent time .

Reflex arc – 3D video

https://www.youtube.com/watch?v=wLrhYzdbbpE

Take a look!

Very helpful website contain many tests for some physiology and anatomy lectures.

http://highered.mcgraw-

hill.com/sites/0072351136/student view0/chapter12/chapter guiz.html

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

1/B – 2/B – 3/C -4/D -5/D

1-Which of the following reflexes inhibits skeletal muscle contraction:

- A- stretch reflex
- **B-** Golgi tendon reflex .
- **C** crossed extensor reflex.
- **D** withdrawal reflex.

2-Inhibitory interneurons are involved in Which of the following spinal reflexes:

- **A-** knee-jerk reflex.
- **B-** Golgi tendon reflex .
- C- stretch reflex.
- **D** withdrawal reflex.

4-Excitatory interneurons are involved in Which of the following spinal reflexes:

- **A-** knee-jerk reflex.
- **B** Golgi tendon reflex .
- **C** stretch reflex .
- D- withdrawal reflex.

5- The reflex arc contains a

- A- sensory reception
- **B** sensory neuron
- **C** motor neuron
- **D-** All of the above.

3-You are walking bare foot and step on a tack with your right foot. All of the following will occur EXCEPT:

- A- flexor muscles in your right thigh and leg contract to remove your foot
- **B** reciprocal innervation inhibits extensor muscles in the same limb
- C- collaterals of sensory neurons stimulate alpha motor neurons that cause extension in the opposite limb
- **D-** collaterals of interneurons stimulate a crossed extensor reflex

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

6/**E** – 7/C – 8/**B**

6-Stretch reflexes:

- **A)** cause muscles to contract in response to a stretching force being applied to them.
- **B)** involve a sensory receptor (muscle spindle).
- C) involve sensory neurons that directly synapse with motor neurons in the spinal cord.
- **D)** help maintain posture.
- **E)** all of the above

7-The withdrawal reflex:

- A)includes the Golgi tendon organs.
- **B)**includes the synapse of sensory neurons directly with alpha motor neurons.
- C)helps to protect the body from painful stimuli.
- **D)**is a response to increased tension at a tendon.
- E)all of the above

8-The Golgi tendon reflex:

- A) involves the synapse of sensory neurons from the Golgi tendon organs with stimulating interneurons at the spinal cord.
- **B)** prevents contracting muscles from applying excessive tension to tendons.
- C) involves the stimulation of alpha neurons leading back to the muscles that are stretching tendons.
- **D)** results in increased tension at tendons.

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

If there are any Problems or Suggestions, Feel free to contact:

Physiology Team Leaders

Mohammed Jameel & Khulood Al-Raddadi

432100187@student.ksu.edu.sa 432200235@student.ksu.edu.sa

