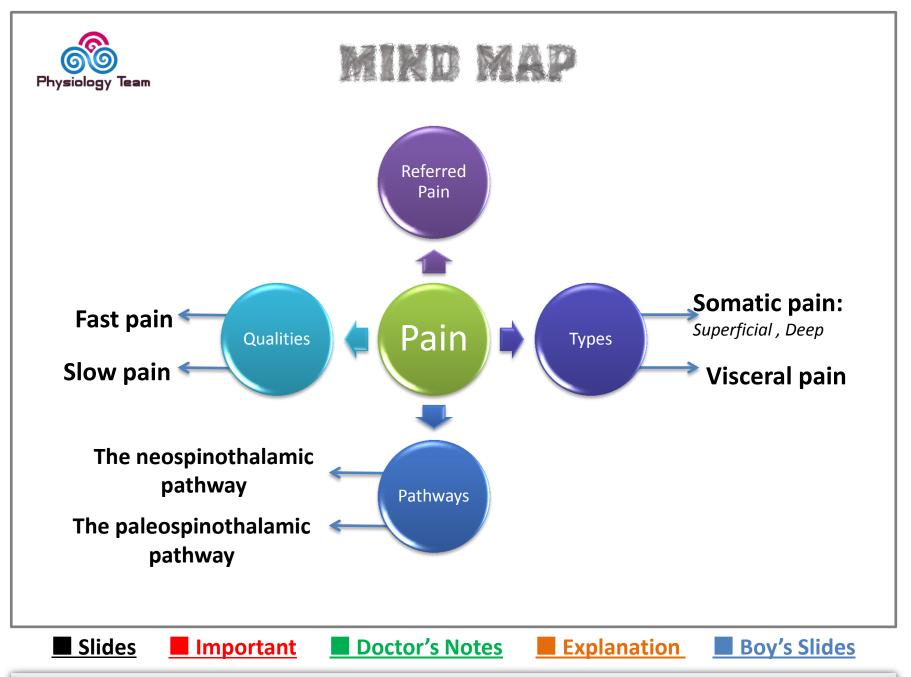


Lecture: 3

Physiology of Pain

Done By: Maha Adosary.

Reviewed By: Naif Alajji


Thanks to Sara Al-haddab

At the end of this lecture, student should be able to describe:

- Pain receptors (nociceptors).
- Effects associated with pain sensation.
- Mechanism of stimulation of pain receptors.
- Qualities of pain.
- Types of pain:
 - Somatic pain (superficial & deep pain).
 - Visceral pain.
- Referred pain.
- Pathway of pain:
 - The neospinothalamic pathway.
 - The paleospinothalamic pathway.
- Role of cerebral cortex in pain perception.

Physiology Team 432 CNS Block Lecture: 3

Pain is unpleasant sensation and emotional experience associated with actual or potential tissue damage. Characterized by:

- 1. It has a protective function.
- 2. All pain receptors are free nerve endings of unmyelinated C fibers & small diameter myelinated A delta (A^{δ}) fibers.
- 3. Pain receptors are the most widely distributed.

Classification of fibers:

- A: alpha, beta, gamma and delta. (High conduction velocity)
- B. (Low conduction velocity)
- C. (Low conduction velocity)
 - Pain sensation can be produced by various types of stimuli i.e. mechanical, thermal & chemical, hence the existence of mechanoceptors, thermoceptors, & polymodal pain receptors (nociceptors).
 - Pain receptors adapt very little, if not at all.
 - Localization of pain stimuli is less exact than that of other modalities.
 - Pain receptors are high threshold receptors i.e. painful stimuli <u>must be strong</u>
 & noxious to produce tissue damage.
 - Pain is perceived at both the cortical & thalamic levels.

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

Effects associated with pain sensation:

- **1- Motor reactions** (These may take the form of)
- Reflexes e.g. withdrawal reflex. e.x: if the bone is broken, the
- Muscle rigidity (stiffness). muscles surrounding it will be

2- Autonomic reaction

- Mild pain stimulates posterior hypothalamic N 'nucleus' → sympathetic changes e.g. tachycardia.
- Sever pain stimulates anterior hypothalamic $N \rightarrow parasympathetic$ changes e.g. bradycardia.
- 3- Emotional reactions

as anxiety, crying......etc.

Mechanism of stimulation of pain receptors(nociceptors):

- Pain receptors are depolarized either **directly** or through the production of pain producing substances that are produced from damaged tissues as a result of inflammation (also called inflammatory mediators) e.g. bradykinin, serotonin, histamine, interleukins, substance P, K+, Ach, proteolytic enzymes.
- تزيد من الاحساس بالألم . Prostaglandins & interleukins lower threshold of pain receptors

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

Qualities of Pain

	Fast pain (immediate, first)	Slow pain (delayed or second)	
Called	Pricking, acute, sharp or electric pain	Burning, aching or chronic pain	
Occurs	Skin	Skin, deep tissues & viscera	
Transmitted by	Type A delta (A ^δ) fibers	Type C fibers	
Conduction velocity	3-30 m/s	< 2 m/s	
Percentage	Account for 20% of nociceptors primary afferents	Account for 80% of nociceptors primary afferents	
Arise from	All types of nociceptors	Polymodal nociceptors	
Appearance and duration	It appears very rapidly within 0.1 sec., and lasts for short time	It appears slowly, after one sec. or more, and lasts for longer duration	
Localization	Well localized	It is diffused (poorly localized)	
Neurotransmitter	Glutamate	Substance P.	
Example	The type of sensation felt when skin is cut with a knife.	S	
Slides I	mportant Doctor's Notes	Explanation Boy's Slides	

Physiology Team 432

CNS Block

Boy's Slides

Referred Pain:

- This is pain that is felt <u>away</u> from its original site.
- It is most frequent with visceral pain & deep somatic pain but cutaneous pain is not referred.
- Pain is referred according to <u>dermatomal</u> rule.

Mechanism of referred pain:

1- Convergence theory:

- Afferent nerves from somatic structure & viscera that develop from same embryonic segment **converge** on same spinothalamic tract.
- Since brain is accustomed to receiving impulses from skin than viscera, so
 pain impulses carried to cortex along spinothalamic neurons shared by
 afferents from skin & other from diseased viscus are misinterpreted by the
 brain as coming from skin.

2- Facilitation theory:

Pain fibers from skin are always carrying impulses, but they are <u>not enough</u> to produce pain. Impulses from diseased viscus pass through afferents which give collaterals to ST "spinothalamic" neurons receiving pain fibers from skin. As a result, ST neurons' excitability is **raised** (they are facilitated) to reach a threshold level. The signals reaching the brain are projected to skin area and pain is felt in skin dermatome.

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

Examples of referred pain

Important!

Organ	Site of referred pain
Meninges	Back of head & neck
<u>Heart</u>	Central chest, inner side of left arm, (left shoulder)
Diaphragm	Shoulder tip
Esophagus	Behind sternum
Stomach, duodenum	Epigastrium
Kidney	Loin
<u>Ureter</u>	Testicles
Trigone of bladder	Tip of penis
Hip	Knee
<u>Appendix</u>	Umbilicus
Uterus	Low back

Physiology Team 432

Important

Slides

CNS Block

Doctor's Notes

Explanation

Boy's Slides

Types of Pain

Pain can be classified according to the site of stimulation into:

Physiology Team				
irriysiology it	1. So	matic Pain	2. Visceral Pain	
	Superficial	Deep	Visceral	
Arises from	Skin or other superficial structures.	Muscles, joints, periosteum, tendons & ligaments.	There are few pain receptors in most viscera. Some viscera are pain insensitive e.g. liver parenchyma, lung alveoli, brain tissue, visceral layer of peritoneum, pleura and pericardium.	
Quality	It occurs in <u>2 phase</u> of fast pricking followed by slow burning pain.	It is slow prolonged conducted by type <u>C fibers</u> .	It is slow pain conducted by <u>C fibers.</u> (pain arising from parietal peritoneum, pleura and pericardium is <u>sharp</u> , <u>pricking type</u>).	
Localization	Well localized.	It is diffuse (poorly localized).	It is diffuse, the patient feels pain arising from inside but he cannot pinpoint it exactly.	
Associations	Associated with motor, autonomic, emotional reactions.	It can initiate <u>reflex</u> contraction of nearby muscles.	 It is often associated with autonomic reactions. It can be associated with rigidity of nearby muscles. 	
Referred Pain	Cutaneous pain is <u>not</u> referred.	It may be referred to other sites.	It may be referred to other sites.	
Cause		It is caused by: trauma, bone fracture & inflammation, arthritis, muscle spasm & ischemia.	 Distension of a hollow organs. Inflammation of an organ. Ischemia e.g. pain due to myocardial ischemia. 	

Slides

Pathway of Pain

Pain sensation is carried by lateral spinothalamic tracts which includes 2 separate pathways:

	The neospinothalamic pathway	The paleospinothalamic pathway
	This transmits <u>fast pain</u> & thermoceptive sensation.	This transmit <u>slow pain</u> sensation & thermoceptive sensation.
First order neurons	Are mainly A delta (A ^δ) afferent nerves. They <u>ascend few segments</u> in Lissauer' tract & terminate at <u>lamina I & V</u> of dorsal horn.	They are mainly type C fibers . They enter spinal cord via dorsal roots, <u>ascend a few segments</u> in Lissauer' tract & terminate at <u>substantia</u> <u>gelatinosa in laminae II & III</u> of dorsal horn.
Second order neurons	These <u>constitute the tract</u> . They start at dorsal horn, <i>cross to opposite side</i> and ascend in lateral column of spinal cord. The fibers ascend in brain stem to terminate in <u>ventrobasal complex</u> of thalamus.	They start at SGR "substantia gelatinosa of rolando", cross to opposite side in front of central canal, ascend in lateral column of spinal cord & terminate at: • Reticular formation of brain stem. • Intralaminar nuclei of thalamus. • Hypothalamus & adjacent region of basal brain. Impulses arriving these regions have strong arousal effects and can be perceived.
Third order neurons	These start at thalamus & project to somatosensory cortex.	These start at thalamus, project to all parts of cerebral cortex.

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

Role of cerebral cortex in pain perception

- → Full perception of pain occurs when signals enter RF "Reticular Formation" of brain stem, thalamus & basal regions.
- ♦ Somatosensory cortex plays important role in *topognosis* i.e. localization & interpretation of pain quality.
- → Fast pain is localized better than slow pain because signals carried in neospinothalamic tract reach somatosensory cortex, while a small propotion of paleospinothalamic pathway reach there.

■ Slides ■ Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

SURRARY

- Pain is unpleasant sensation and emotional experience associated with actual or potential tissue damage.
- All pain receptors are free nerve endings of unmyelinated C fibers & small diameter myelinated A delta (A^{δ}) fibers.
- Effects associated with pain sensation:
 - 1- Motor reactions.
 - 2- Autonomic reactions.
 - 3- Emotional reactions.
- Qualities of pain:
 - 1- Fast pain.
 - 2- Slow pain.
- Referred pain is pain that is felt away from its original site.
- Mechanism of referred pain:
 - 1- Convergence theory.
 - 2- Facilitation theory.
- Types of pain:

Somatic pain (superficial & deep pain).

Visceral pain.

Fast pain is localized better than slow pain .

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

QUESTIONS

1. Which pain is not referred:

- a. Visceral.
- b. Deep.
- c. Superficial.

2. The neurotransmitter for Fast pain is:

- a. Glutamate.
- b. Substance P.

3. The Appendix pain is referred to:

- a. Testicles.
- b. Knee.
- c. Umbilicus

1.

. A

. C

■ Slides
■ Important

Boy's Slides

THE FLO

If there are any Problems or Suggestions, Feel free to contact:

Physiology Team Leaders

Mohammed Jameel & Shaimaa Alrefaie

432100187@student.ksu.edu.sa 432200643@student.ksu.edu.sa

