

LECTURE: 5

The neurotransmitters & receptors of Autonomic NS

Done By: Fay Al-Ruwais

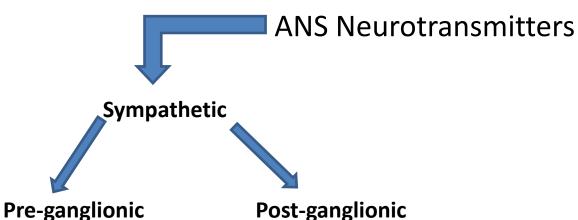
Reviewed By: Abdulrahman Al-Akeel

At the end of this lecture, student should be able to describe:

- Describe neurotransmitters that can release at pre and post ganglionic of Autonomic NS.
- Describe Autonomic NS receptors.

Slides | Important

Doctor's Notes


Explanation

Boy's Slides

Physiology Team 432

CNS Block

Post-ganglionic

Adrenergic (release norepinephrine |

Except: Sweat glands and blood vessels to skeletal muscles are Cholinergic

Parasympathetic

Postganglionic neurons release acetylcholine (Cholinergic)

Cholinergic

acetylcholine

release

*Note: this slide from boy's slides.

Acetylcholine activates

mainly 2 types of receptors

Muscarinic receptors

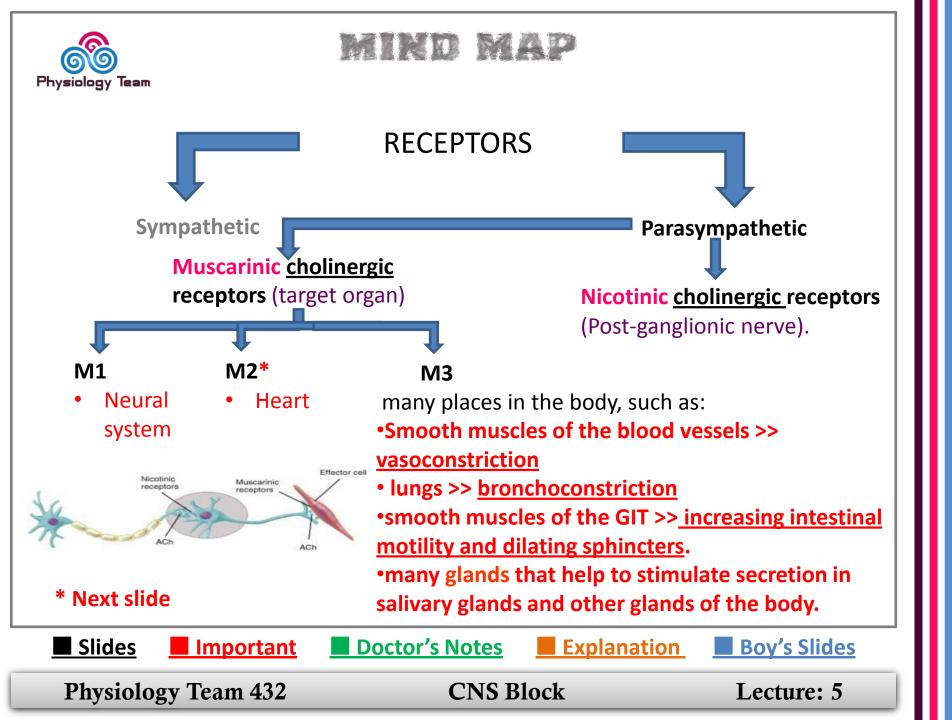
- •Are found on all effector cells that are stimulated by the postganglionic cholinergic neurons of either the parasympathetic nervous system or the sympathetic system.
- •Also, it activated by muscarine.

Nicotinic receptors

- •Are found in the autonomic ganglia at the synapses between the preganglionic and postganglionic neurons of both the sympathetic and parasympathetic systems.
- •Also, it activated by nicotine.

Slides

Important

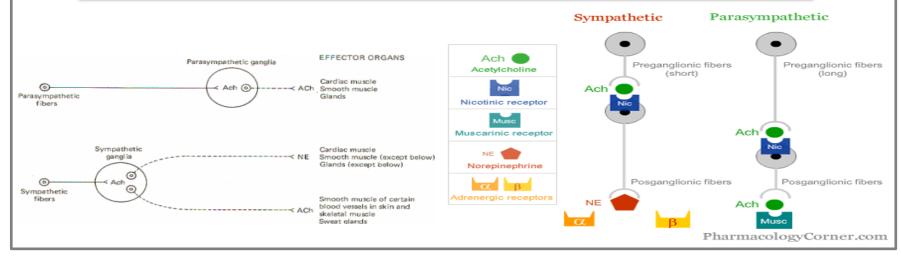

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block



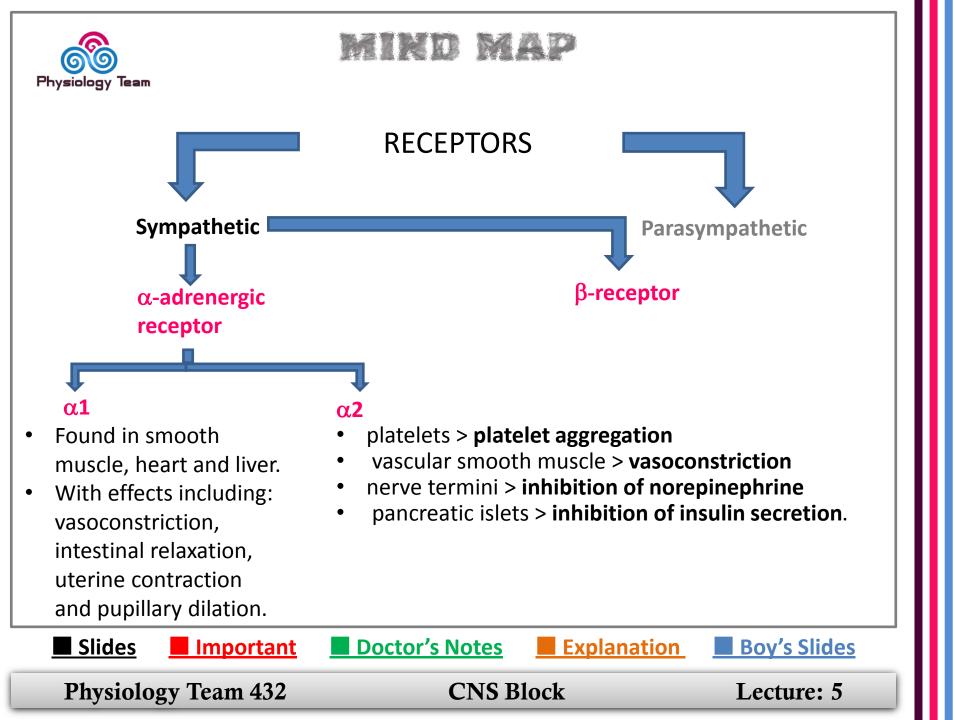
* M2 Muscarinic cholinergic receptors:

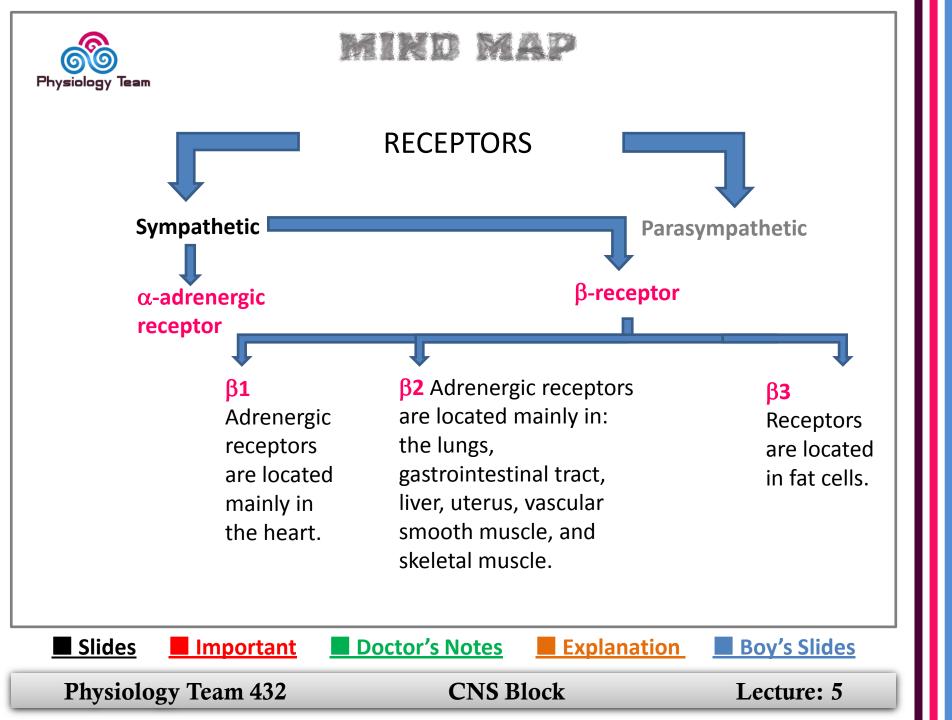
Act to bring the heart back to normal after the actions of the sympathetic nervous system: slowing down the heart rate, reducing contractile forces of the atrial cardiac muscle, and reducing conduction velocity of the SA and AV node.

Note, they have no effect on the contractile forces of the ventricular muscle.

Slides

Important


Doctor's Notes


Explanation

Boy's Slides

Physiology Team 432

CNS Block

Remember

α-adrenergic receptors > respond to norepinephrine

 β -adrenergic receptors > respond to <u>epinephrine</u> (particularly).

 α -adrenergic receptors > respond to blocking agents as <u>phenoxybenzamine</u>.

 β -adrenergic receptors > respond to blocking agents as propranolol.

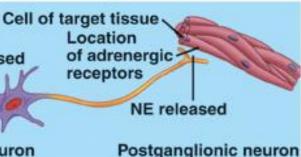
Slides

Important

Doctor's Notes

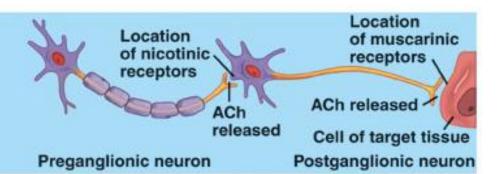
Explanation

Boy's Slides

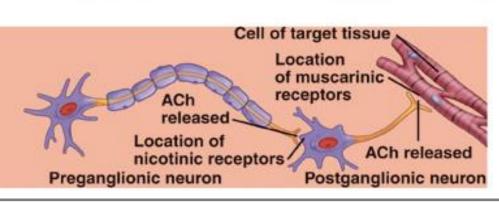

Physiology Team 432

CNS Block

Sympathetic division


Most target tissues innervated by the sympathetic division have adrenergic receptors. When norepinephrine (NE) binds to adrenergic receptors, some target tissues are stimulated, and others are inhibited. For example, smooth muscle cells in blood vessels are stimulated to constrict, and stomach glands are inhibited.

Location of nicotinic receptors Preganglionic neuron


Sympathetic division

Some sympathetic target tissues, such as sweat glands, have muscarinic receptors, which respond to acetylcholine (ACh). Stimulation of sweat glands results in increased sweat production.

Parasympathetic division

All parasympathetic target tissues have muscarinic receptors. The general response to ACh is excitatory, but some target tissues, such as the heart, are inhibited.

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

Vascular constriction = according to the structure, there will be a <u>different receptor</u>

circulatory system

	Sympathetic (adrenergic receptors, with exceptions)	Parasympathetic (muscarinic receptors)
cardiac output	(not known yet) increases	M2: decreases
SA node: heart rate (chronotropic)	β1, β2 : increases	M2: decreases
cardiac muscle: contractility (inotropic)	β1, β2 : increases	M2:decreases (atria only)
conduction at AV node	β1 : increases	M2: decreases
vascular smooth muscle	M3: contracts; α (in skin) = contracts; β2 (in Blood vessels of skeletal muscles) = relaxes	
platelets	α2: aggregates	
mast cells - histamine	β2 : inhibits	

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

respiratory system			
	Sympathetic (adrenergic)	Parasympathetic (muscarinic)	
smooth muscles of bronchioles	$\beta 2$: relaxes (major contribution); $\alpha 1$: contracts (minor contribution)	M3: contracts	
nervous system			
pupil of eye	α1: relaxes	M3: contracts	
ciliary muscle	β2: relaxes	M3: contracts	

■ Slides ■ Important ■ Doctor's Notes ■ Explanation ■ Boy's Slides

Physiology Team 432 CNS Block Lecture: 5

digestive system				
	Sympathetic (adrenergic, with exceptions)	Parasympathetic (muscarinic)		
salivary glands: secretions	β: stimulates viscous, amylase secretions; $α$ 1 = stimulates potassium cation	stimulates watery secretions		
lacrimal glands (tears)	decreases	M3: increases		
kidney (renin)	secretes			
parietal cells		M1: secretion		
liver	α1 , β2 : glycogenolysis, gluconeogenesis			
adipose cells	β3: stimulates lipolysis			
GI tract motility	decreases	M1, M3: increases		
smooth muscles of GI tract	α, β2: relaxes	M3: contracts		
sphincters of GI tract	α1: contracts	M3: relaxes		
glands of GI tract	inhibits	M3: secretes		

■ Slides ■ Important ■ Doctor's Notes ■ Explanation ■ Boy's Slides

Physiology Team 432 CNS Block Lecture: 5

66	
Physiology Tear	n

endocrine system				
	Sympathetic (adrenergic)	Parasympathetic (muscarinic)		
pancreas (islets)	α2: decreases secretion			
adrenal medulla	N: secretes epinephrine			
urinary system				
bladder wall	β2: relaxes	contracts		
ureter	α1: contracts	relaxes		
sphincter	α1: contracts; β2 relaxes	relaxes		
reproductive system				
uterus	α1: contracts; β2: relaxes			
genitalia	α: contracts	M3: erection		
sweat gland secretions	M: stimulates (major contribution); α 1: stimulates (minor contribution)			
arrector pili	α1: stimulates			

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

SUMMARY

- Activation of α receptors leads to smooth muscle contraction
- Activation of <u>β2 receptors</u> leads to <u>smooth muscle relaxation</u>
- Activation of $\underline{\beta 1}$ receptors leads to smooth muscle contraction (especially in heart)

Cholinergic Receptors

The two types of receptors that bind ACh are nicotinic and muscarinic These are named after drugs that bind to them and mimic ACh effects

• Nicotinic Receptors

Nicotinic receptors are found on:

- Motor end plates (somatic targets)
- All ganglionic neurons of both sympathetic and parasympathetic divisions
- The hormone-producing cells of the adrenal medulla

The effect of ACh binding to nicotinic receptors is always stimulatory

■ Slides ■ Important ■ Doctor's Notes ■ Explanation ■ Boy's Slides

Physiology Team 432 CNS Block Lecture: 5

SURMARY

Muscarinic Receptors

Muscarinic receptors occur on all effector cells stimulated by postganglionic cholinergic fibers

The effect of ACh binding:

- Can be either inhibitory or excitatory
- Depends on the receptor type of the target organ

Adrenergic Receptors

The two types of adrenergic receptors are alpha and beta Effects of NE binding to:

 α receptors is generally stimulatory β receptors is generally inhibitory

A notable exception – NE binding to β receptors of the heart is stimulatory

Dual Innervation

Most of viscera receive nerve fibers from both parasympathetic and sympathetic divisions

Both divisions do not normally innervate an organ equally

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

QUESTIORS

- What's the neurotransmitter of the sympathetic system?
 Norepinephrine
- * Is asked by Dr. Fawzia
- *If they didn't define the location where the neurotransmitter works (post or pre ganglionic) then we choose the answer according to its post ganglionic location, because pre ganglionic neurotransmitter is always Ach.

Complete:

1- M3 muscarinic receptor will _____ sphincters of GI tract.

(True/False):

- 2- M2 muscarinic receptor decreases the contractility of both atria and ventricles.
- 3- Sympathetic Post-ganglionic neurotransmitters are all Adrenergic.

Answers:

- 1- Relaxes. 2- False (only atria).
- 3- False (Sweat glands blood vessels to skeletal muscles are Cholinergic).

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

If there are any Problems or Suggestions, Feel free to contact:

Physiology Team Leaders

Mohammed Jameel & Khulood Al-Raddadi

432100187@student.ksu.edu.sa 432200235@student.ksu.edu.sa

