The Objectives - What are macro and micronutrients? - Types - Functions - Sources and RDAs - Diseases and conditions due to their deficiency - Slids Num. 18, 19 & 20 are great summary from our sisters Eman Al-Bediea & Khulood Al-Raddadi. ## Mind Map Team ## **Macro and Micronutrients** #### **Macronutrients** - Nutrients needed by the body in large amounts (proteins, carbohydrates, fats) - They provide energy and building blocks for proteins, carbohydrates and fats #### **Micronutrients** - Nutrients needed by the body in small amounts (vitamins, minerals, trace elements) - Required for maintaining normal health and preventing various diseases - They do not provide energy ## Energy Content of Food - Body obtains energy as ATP - ATP is used for all body functions - The energy content of food is measured in calories (Kilocalories) - One calorie is the heat required to raise the temperature of 1 gm. of water by 1°C - Proteins → 4 kcal/gm (It means that 1 gm of protein produce 4kcal of energy) - Carbohydrates → 4 kcal/gm - Fat \rightarrow 9 kcal/gm ## Acceptable Macronutrient Distribution Range (AMDR) Adequate intake of macronutrients to prevent the risk of disease ## AMDR for adults: o CHOs: 45-65% Proteins: 10-35% Fats: 20-35% we should memorize the numbers #### Figure 27.8 Influence of nutrition on some common causes of death in the United States in the year 2000. Red indicates causes of death in which the diet plays a significant role. Blue indicates causes of death in which excessive alcohol consumption plays a part. (*Diet plays a role in only some forms of cancer.) The diet plays a role in the diseases in red Copyright © 2005 Lippincott Williams & Wilkins ## **Proteins** All RDAs are not important they will be colored in light gray ## Nutritional Importance of Proteins Proteins supply amino acids and amino nitrogen for the body - 1- Essential amino acids: Body can't synthesize, must be supplied in the diet (PVT TIM HALL): Pheylalanine, Valine, Tryptophan, Threonine, Isoleucine, Methionine, Histidine, Arginine, Lysine, Leucine "these are the essential and any other aa (amino acid) will be non-essential" - **2- Non-essential**: body can synthesize #### Nutritional Quality of Proteins - A measure of a protein's ability to provide the essential amino acids required for tissue maintenance - Measured in PDCAAS units (Digestibility-Corrected Amino Acid Scoring) - High value indicates more digestibility and high quality (maximum score 1.0) - Proteins from animal sources: 0.82-1.0"higher than plants" - o Proteins from plant sources: 0.4 #### Sources and RDA *RDA= recommended daily allowance #### Sources Meat, poultry, fish, milk, wheat, corn, beans, nuts #### RDA (gms/kg body weight): Normal adults: 0.8 Athletes: 1.0 Pregnancy / lactation: upto 30 Children: 2.0 Example 1: If the weight of a normal adult is 70 kg ... the amount of protein intake should be \rightarrow 70 * 0.8 = 56 gm ## Nitrogen Balance How it is calculated? Intake = excretion If the intake is more → positive , and if it is less → negative #### Normal Nitrogen Balance In a healthy person, the nitrogen intake is equal to nitrogen loss #### Positive nitrogen balance When nitrogen intake is more than loss Occurs in growth, pregnancy, lactation, recovery from illness #### Negative nitrogen balance When nitrogen loss is more than intake Occurs in burns, trauma, illness, metabolic stress ## Protein-Energy Malnutrition #### **Malnutrition:** A condition or disease caused by not eating enough food or not eating a balanced diet Malnutrition due to inadequate intake of proteins or energy #### Two conditions: | The disease | Marasmus | Kwashiorkor | | |---|---|--|--| | Causes | Inadequate intake of energy with adequate protein intake | Inadequate intake of proteins with adequate energy intake | | | Age under 1 year of age (when mother's milk is supplemented with native cereals deficient in protein & calories) | | after weaning (about one year of age) | | | Symptoms | Arrested growth Extreme muscle wasting Weakness Anemia No edema or changes in plasma proteins | Stunted growth Diarrhea Dermatitis (inflammation of skin) / thin hair Anorexia (loss of appetite) Enlarged fatty liver ↓↓ plasma albumin a deceptively plump belly as a result of <u>Edema</u> | | ## Carbohydrates - Their major role in diet is energy production. - o Types in the diet: - 1- Simple CHOs: sucrose, fructose, lactose, corn syrup. - 2- Complex CHOs: whole grains, pasta, wheat, starch. - o RDA: - 130 grams/day for adults and children. - CHO intake above RDA causes weight gain or obesity due to increased fat storage in adipose tissue. ## **Protein-Sparing Effect** When we do exercises, our body firstly burns Carbohydrates, then fat, and finally the proteins. - Dietary protein requirement and CHO diet are related to each other - CHO have protein-sparing effect - They inhibit gluconeogenesis from amino acids - Amino acids are used for repair and maintenance of tissue protein and not for gluconeogenesis - If CHO intake is less than the RDA (130 g/day) - o more protein will be metabolized - o more gluconeogenesis will take place - Absorbs water → make food heavy → Slows gastric emptying → promote sensation of fullness and maintain blood glucose level (help in obesity and in DM) - o increase motility → reduce constipation - → Help in secretion of bile acid → lowers LDL level (reduction in risk for cardiovascular diseases) ## Dietary Fiber - The component of food that cannot be broken down by human digestive enzymes - o RDA (gm/day): Men: 38, Women: 25 #### Benefits: - Lowers serum LDL levels - Reduces constipation - Promotes feelings of fullness - Slows gastric emptying (long-term glucose control in patients with diabetes mellitus) - Reduces exposure of gut to carcinogens ## **Fats** #### Fats in the Diet - A concentrated source of energy (9 kcals/gram) - Supply essential fatty acids such as linoleic and linolenic acids - Provide phospholipids for membrane function - Source of fat-soluble vitamins (A, D, E, K) and help in their absorption - RDA (gm/day): Total fats: 65, Saturated: 20 - Excessive fat intake can cause - Atherosclerosis/heart disease - Obesity The are called omega 3 and 6 depending on the location of the first double bond. What does (20:5, n-6) .. (20:4, n-3) mean? (number of carbon atoms : number of double bonds, first double bond) ### Essential Fatty Acids - o Two essential fatty acids: - α -linolenic acid (ω -3 fatty acid) - linoleic acid (ω-6 fatty acid) - Deficiency causes: scaly skin, dermatitis, reduced growth (most common in infants) - Used for eicosanoids synthesis which appear to have cardioprotective effects - decrease blood clotting - decrease blood pressure # Arachidonic acid (20:4, n-6) (20:5, n-3) found in seed oils #### Trans Fatty Acids - Unsaturated fatty acids, behaving more like saturated fatty acids in the body - increase serum LDL (but not HDL) - risk of CVD - Not found in plants (animals only) - Formed during hydrogenation of liquid vegetable oils - Found in baked food: cookies, cakes, deep-fried foods ## Essential Fatty Acids | Essential Fatty Acids | Omega-3 Fatty Acids | Omega-6 Fatty acids | | |-----------------------|--|---|--| | Sources | Plants Fish oil containing docosahexaenoic acid
(DHA) and eicosapentaenoic acid (EPA) | Nuts Avocados Olives Soybeans Oils (sesame, cottonseed, corn oil) | | | Effects | Suppress cardiac arrhythmias ↓Serum triacylglycerol ↓Tendency to thrombosis Lower blood pressure ↓Risk of cardiovascular mortality Little effect on LDL or HDL levels | ↓ Plasma cholesterol ↓ LDL ↓ HDL No effect on TG | | | MORE | Mainly found in cold-water ocean fish such as: albacore, mackerel, salmon, sardines, tuna, whitefish Play an important role as: Structural membrane lipids Modulator of ω-6 fatty acid metabolism | Mody an Riochomistry Toam | | ## Recommendations for Omega-3 Fatty Acid Intake ## **American Heart Association Guidelines** #### The doctor said that this slide is just for your Knowledge | Population | Recommendation | | |---|--|--| | Patients without coronary heart disease (CHD) | Fatty fish twice a week Include oils and foods rich in a-linolenic acid (flaxseed, canola and soybean oils; flaxseed and walnuts) | | | Patients with CHD | 1 gm of EPA+DHA per day from fatty fish EPA+DHA supplements | | | Patients who need to lower triglycerides (fats) | 2 to 4 grams of EPA+DHA per day provided as capsules under a physician's care | | EPA+DHA= Fish oil DHA = DocosaHexaenoic Acid EPA = EicosaPentaenoic Acid - Organic compounds present in small quantities in different types of food - Help in various biochemical processes in cell - Important for growth and good health - Essential - Noncaloric - Required in very small amounts ## Water-Soluble Vitamins - thiamin (vitamin B₁) - riboflavin (vitamin B₂) - Niacin (vitamin B₃) - pyridoxine (vitamin B₆) - Biotin (vitamin B7) - ascorbic acid (vitamin C) - pantothenic acid (vitamine B₅) - Folate (vitamin B9) - cobalamin (vitamin B₁₂) ## Fat-Soluble Vitamins - **-** - D - E - K (stored in the body) Together they form the word AKED (کید) vitamins | Vitamin D (Calciferol) | functions | Synthesized either from 7-dehydrocholesterol or ergosterol by UV light Considered a hormone, can be synthesized by the body Maintains calcium homeostasis, healthy bones and teeth Promotes calcium/phosphorous absorption from the intestine Increases bone mineralization | | | |------------------------|--|---|--|--| |) Q (| Sources and RDA (mg/day): | Sunlight, fish, egg yolk, milk Adults and Children: 600 | | | | Vitamin | deficiency Rickets: (in children) Insufficient bone mineralization in children Bones become soft and deformed Osteomalacia: (in adults) Bone demineralization and increased osteoporosis Painful bones with frequent fractures | | | | | lul | functions | Antioxidant: prevents oxidation of cell components by molecular oxygen and free radicals May have a role in fertility and anti-aging effect (that's why some creams contain vitamin E) α - tocopherol is the most active form in the body | | | | /itamin E | Sources and RDA (mg/day): | Vegetable Oil, nuts, seeds, vegetables Adults: 15, Children: 7 | | | | Vita | deficiency | (mostly observed in premature infants) Defective lipid absorption Anemia due to oxidative damage to RBCs Neurological problems Male infertility | | | | tamin | n) | functions | Active form: Thiamin pyrophosphate (TPP) Coenzyme for transketolase and oxidative decarboxylation reactions In thiamin deficiency, the activity of these two dehydrogenases is decreased Causing: Low ATP production and defective cellular function | | | | |----------------------|---------|---------------------------|--|--|--|--| | ĮΛĮ | ami | Sources and RDA (mg/day): | Plants, cereals, meat Adults: 1.2, Children: 0.6 | | | | | Functions of Vitamin | B1 (Thi | deficiency | Beriberi A type of chronic peripheral neuritis due to severe thiamin deficiency causes weakness, neuropathy, disorderly thinking, paralysis Thiamin has a role in nerve conduction Neuropathy affects glial cells (astrocytes) of the brain and spinal cord causing neuron death Wernicke-Korsakoff syndrome Common in alcoholics due to defective intestinal absorption of thiamin or dietary insufficiency Causes apathy, loss of memory | | | | | lic Acid | ency | functions | Folate: natural / Folic acid: synthetic form Essential for synthesis of many compounds Important in one-carbon metabolism Transfers one-carbon units to intermediates, amino acids, purines and thymine Helps prevent cancer and heart disease | | | | | ollic. | fici | Sources and RDA (mg/day): | Green leafy vegetables, lentils, peas, beans Adults: 400, Children: 150-200, Pregnancy: 500-600 | | | | | 9년 | De | deficiency | Deficiency in pregnancy and lactation due to increased demand Poor intestinal absorption due to alcoholism or drugs Megaloblastic anemia Anemia with larger RBCs Neural tube defect (spine bifida, anencephaly) Folic acid supplementation in early pregnancy reduces the risk of neural tube defect in fetus | | | | | functions | Powerful antioxidant (prevents some cancers) Helps in dentine, intercellular matrix and collagen formation Increases iron absorption Helps in the maturation of RBCs Promotes wound healing Stimulates phagocytic action of leukocytes (enhance immunity) Reduces risk of cataract formation | |------------------------------|--| | Sources and RDA
(mg/day): | Citrus fruits, tomatoes, melon, peppers Men: 90, Women: 75, Children: 15-25 | | deficiency | Abnormal collagen production Gums become painful, swollen and spongy The pulp is separated and the teeth are lost | | | Sources and RDA
(mg/day): | Scorbutic gums in vitamin C deficiency. Gums are swollen, ulcerated, and bleeding due to vitamin C-induced defects in oral epithelial basement membranes and periodontal collagen fiber synthesis. Med432 Biochemistry Team Minerals and Trace Elements Macrominerals (>100 mg/day) - Calcium - Phosphorous - Sodium - Potassium - Chloride - Magnesium Microminerals (<100 mg/day) - Iron - Iodine - Copper - Manganese - Zinc - Cobalt - Molybdenum - Selenium - Fluoride - Chromium - Silicon odina | functions | Dietary iodine is stored in thyroid gland for thyroid hormone synthesis Tri-iodo-thyronine (T₃) and thyroxine (T₄) | |---------------------------|--| | Sources and RDA (mg/day): | Dairy products (Milk products), seafood, fortified salt Adults: 150, Children: 90 | | deficiency | Cretinism: deficiency of thyroid hormones in children causes stunted physical and mental growth Goiter: enlargement of thyroid gland due to iodine deficiency affecting thyroid hormone synthesis | | | functions | Oxygen transport and metabolism Part of hemoglobin (in blood), myoglobin (in muscles), cytochromes (in redox reactions) Body stores iron as ferritin, hemosiderin and transferrin Adult women have much lower iron storage than men Iron is transport in plasma in the form of Transference Iron is stored in two forms | | | |---------|------------------------------|---|--|--| | Iron | Sources and RDA
(mg/day): | Heme iron: Animal products (meat, liver), 25% absorption Nonheme iron: Plants (spinach, beans), 5% absorption Men: 8, Women: 18, Children: 7-15 | | | | | deficiency | Iron deficiency anemia is most common Growing children, pregnant, lactating and menstruating women need more iron Hemosiderosis (iron overload disorder) Due to iron excess (toxicity) Hemosiderin (Iron stored in complex with ferritin protein in liver and spleen) Occurs in persons receiving repeated blood transfusions | | | | Jm | functions | Bone growth and teeth formation Neurotransmission of nerve impulse / muscle function Blood coagulation / activates enzymes | | | | calcium | Sources and RDA (mg/day): | Mainly dairy products (milk, yoghurt, cheese) Men: 1000, Women: 1200, Children: 700-1300 | | | | | deficiency | Rickets, osteomalacia, osteoporosis | | | | | Proteins | Carbohydrates | Fats | |-----------|---|---|---| | RDA | Normal adults: 0.8 Athletes: 1.0 Pregnancy / lactation: up to 30 Children: 2.0 | (Major energy source)
130 grams/day for adults and children | Total fats: 65
Saturated: 20 | | SOURCES | Meat, poultry, fish, milk, wheat, corn, beans, nuts | 1- Simple CHOs: sucrose, fructose, lactose, corn syrup.2- Complex CHOs: whole grains, pasta, wheat, starch. | | | FEATURES | Nitrogen balance: Normal : N intake = N loss negative : N intake < N loos positive : N intake > N loos | Protein-sparing effect - They inhibit gluconeogenesis from amino acids Amino acids are used for repair and maintenance of tissue protein. | Supply essential fatty acids such as linoleic and linolenic acids. Provide phospholipids for membrane function. Source of fat-soluble vitamins (A, D, E, K) and help in their absorption. | | DISORDERS | Deficiency results in: 1-Marasmus: - Inadequate energy, adequate protein. - < 1 year of age. - Arrested growth, muscle wasting - Weakness, Anemia. - No edema or changes in plasma proteins. 2-Kwashiorkor: - Inadequate protein, adequate energy. - After weaning (about one year of age). - Stunted growth, Skin lesions & depigmented hair. - Anorexia - Enlarged fatty liver and low plasma albumin | | Excessive fat intake: - Atherosclerosis/heart disease Obesity. | ## **Summary of Micro nutrients** | | Caddadaa J Ca Innote I I I I I I I I I I I I I I I I I I I | | | | | |---------------------------|---|--|---|---|--| | | Sources | RDA | Importance | Deficiency | | | Vitamin D
(Calciferol) | - Sunlight, fish, egg yolk, milk.
- Synthesized either from
7-dehydrocholesterol or
ergosterol by UV light | Adults and
Child: 600
(mg/day) | 1-Maintains calcium homeostasis, healthy bones and teeth. 2-Promotes calcium/phosphorous absorption from the intestine. 3-Increases bone mineralization. | 1- Rickets: Insufficient bone mineralization in children Bones become soft and deformed. 2- Osteomalacia: Bone demineralization and increased osteoporosis Painful bones with frequent fractures. | | | Vitamin E | Vegetable Oil, nuts,
seeds, vegetables. | Adults: 15
Children: 7
(mg/day) | Antioxidant have a role in fertility. α - tocopherol is the most active form in the body. | - Mostly observed in premature infants. 1- Defective lipid absorption. 2- Anemia due to oxidative damage to RBCs. 3- Neurological problems. 4- Male infertility. | | | Vitamin B1
(Thiamin) | Plants, cereals, meat | Adults: 1.2
Child: 0.6 | - Active form: Thiamin pyrophosphate (TPP) - Coenzyme for transketolase and oxidative decarboxylation reactions. | 1- Beriberi: A type of chronic peripheral neuritis due to severe thiamin deficiency causes weakness, neuropathy, disorderly thinking, paralysis. 2- Wernicke-Korsakoff syndrome: | | | Folic Acid | Green leafy vegetables,
lentils, peas, beans | Adults:400
Child:
150-200
Pregnancy:
500-600 | Important in one-carbon metabolism Transfers one-carbon units to intermediates, amino acids, purines and thymine. Helps prevent cancer and heart disease. | -Deficiency in pregnancy and lactation due to increased demand -Poor intestinal absorption due to alcoholism or drugs Leads to: 1-Megaloblastic anemia: Anemia with larger RBCs. 2- Neural tube defect: Folic acid supplementation in early pregnancy reduces the risk of neural tube defect in fetus. | | | Vitamin C | Citrus fruits, tomatoes,
melon, peppers | Men: 90
Wom: 75
Ch: 15-25 | Powerful antioxidant. Increases iron absorption. Helps in the maturation of RBCs. Promotes wound healing. | Scurvy: 1- Abnormal collagen production. 2-Gums become painful, swollen and spongy. 3-The pulp is separated and the teeth are lost. | | ## **Summary of Minerals and Trace Elements** | | Calcium | Iron | lodine | | | | |------------|--|--|---|--|--|--| | Function | 1-Bone growth and teeth formation. 2-Neurotransmission of nerve impulse/
muscle function. 3-Blood coagulation / activates
enzymes. | 1- Oxygen transport and metabolism. 2- Part of hemoglobin, myoglobin, cytochromes. 3- Body stores iron as ferritin, hemosiderin and transferrin. 4- Adult women have much lower iron storage than men. | Dietary iodine is stored in thyroid gland for thyroid hormones synthesis "Tri-iodo-thyronine (T ₃) and thyroxine (T ₄)" | | | | | Sources | Mainly dairy products (milk, yoghurt, cheese) | 1- Heme iron: Animal products (meat, liver), 25% absorption.2-Nonheme iron: Plants (spinach, beans), 5% absorption. | Dairy products, seafood, fortified salt | | | | | RDA | Men: 1000
Women: 1200
Children: 700-1300 | Men: 8
Women: 18
Children: 7-15 | Adults: 150
Children: 90 | | | | | Deficiency | 1- Rickets 2- osteomalacia 3- osteoporosis | 1- Anemia is most common. Growing children, pregnant, lactating and menstruating women need more iron 2- Hemosiderosis (iron overload disorder)>> in hemorrhage. - Hemosiderin (Iron stored in complex with ferritin protein in liver and spleen). - Occurs in persons receiving repeated blood transfusions. | 1- Cretinism: deficiency of thyroid hormones in children causes stunted physical and mental growth. 2- Goiter: enlargement of thyroid gland due to iodine deficiency affecting thyroid hormone synthesis . | | | | - Due to iron excess (toxicity) ## Test your knowledge ..! 1- the amount of energy yielded by 1 gm of protein = A- 4 kcal B- 9 kcal C-7 kcal D- 10 kcal 2- which one of the following lowers the triacylglycerol level in blood? A- omega-3 FA B- omega-6 FA C- trans fatty acids D- vitamin E 3- which one of the following conditions is related to Folic acid deficiency? A- megaloblastic Anemia B- osteoporosis C- Beriberi D- Scurvy 4- which one of the following conditions is related to Vitamin C deficiency? A- megaloblastic Anemia B- osteoporosis C- Beriberi D- Scurvy 5- In osteomalacia there is a: A- insufficient bone mineralization b- demineralization c-Inadequate intake of proteins Answers: ## Thank you") If you find any mistake, please contact us:) Biochemistryteam@gmail.com Biochemistry team leaders: Basil AlSuwaine And Manar AlEid