

Practical

432 **Hematology** Team

Done By: Roqaih Al-Dueb & **Othman** Al-Mutairi & **Ibrahim** Abunohaiah

Practical Haemaglobinopathy

Introduction to Haemoglobin Variants:

Hemoglobin variants are mutant forms of hemoglobin, caused by genetical variation. Some well-known hemoglobin variants such as Hb S are responsible for sickle cell anemia which is one of the **hemoglobinopathies**. And some are undetectable non-pathological variats. Some normal hemoglobin types are; Hemoglobin A (Hb A) which constitute 95-98% of hemoglobin found in adults, Hemoglobin A2 (Hb A2), which consitiute 2-3% of hemoglobin found in adults, and Hemoglobin F (Hb F) which is the fetal Hb.

Effects of Haemoglobin variants:

Variant	Clinical and haematological abnormalities	
HbS	Recurrent painful crises (in adults) and chronic haemolytic anaemia; both related to sickling of red cells on deoxygenation*	
HbC	Chronic haemolytic anaemia due to reduced red cell deformability on deoxygenation, * deoxygenated HbC is less soluble than deoxygenated HbA.	
Hb Köln, Hb Hammersmith	Spontaneous or drug-induced haemolytic anaemia due to instability of the Hb and consequent intracellular precipitation.	
HbM Boston, HbM Saskatoon	Cyanosis due to congenital methaemoglobinaemia as a consequence of a substitution near or in the haem pocket.	
Hb Chesapeake	Hereditary polycythaemia due to increased O ₂ affinity.	
Hb Constant Spring, Hb Lepore, HbE Thalassaemia-like syndrome due to decreased rate synthesis of normal chains.		
Hb Indianapolis	Thalassaemia-like syndrome due to marked instability of Hb	

^{*} Only in homozygotes

All of these have similar features (hemolytic anemia – target cells – spleenomegaly – trait usually asymptomatic or mild symptomatic – if the disease combined with another abnormal Hb, the patient will present with sever hemolytic anemia).

Abnormal Haemoglobin Variants:

1- Hb C:

- Is due to replacement of Glutamic acid in position 6 of the beta chain by Lysine ($\alpha_2\beta_2$ 6-GLU \rightarrow LYS).
- About 7-22% of people of West Africa ar hetrozygotes <u>especially Nigeria</u> and <u>North Ghana</u>.
- Homozygotes are rare and have mild to moderate hemolytic anaemia with many thick target RBCs in the blood film and mild to moderate splenomegaly.
- The chronic hemolytic anaemia is due to reduced red cell deformability on deoxygenation.
- Deoxygenated HbC is less soluble than deoxygenated HbA.
- Double heterozygotes with sickle Hb S/C give moderate to sever anaemia with symptoms of sickle cell disease.

2- Hb D Punjab:

- Is due to replacement of Glutamic acid in position 121 of the beta chain by Glutamine ($\alpha_2\beta_2$ 121-GLU \rightarrow GLN).
- Prevalent in Indian and Pakistani in every 100 persons about 1 trait (1% of the population).
- Trait are usually health.
- Homozygous D/D have mild to moderate anaemia.
- Combined double heterozygotes Hb S/D can give rise to moderate to a severe anaemia and symptoms of sickle cell disease.

3- Hb E:

- Is due to replacement of Glutamic acid in position 26 of the beta chain by Lysine ($\alpha_2\beta_2$ 26-GLU \rightarrow LYS) is one of the most common beta-chain variants.
- It is very prevalent in <u>South East Asia</u> (50%) of the population are heterozygotes. (Philbin, Taiwan and Indonesia)
- Patients who are homozygous generally have mild haemolytic anaemia, microcytic hypochromic red cells and mild enlargement of the spleen.
- Carriers are symptomless unless they have combined other mutations such as the one for alpha thalassemia, or beta-thalassemia trait.

4- Hb O Arab:

- Is due to replacement of Glutamic acid in position 121 of the beta chain by Lysine ($\alpha_2\beta_2$ -121 GLU \rightarrow LYS)
- Heterozygotes are not symptomatic.
- Double heterozygous with sickle S/O are clinically severe.
- Hb O- Arab enhance the polymerization of HbS.

5-Hb S:

- Is due to replacement of Glutamic acid in position 6 of the beta chain by Valine $(\alpha_2\beta_2 \text{ 6-GLU} \rightarrow \text{Val})$.
- There's two sickle cell traits one is homozygous sickle cell anemia (ss) and they other is double heterozgous sickle cell with Thalassemia's or Hb-C diseases.
- Hb-S under low oxygen tension form a an intracellualr rod-shpd polymer which affect the erythrocyte deformarion unableing them to squeeze in microcirculatory vessels(local hypoxia).
- Is highly prevalent in sub-saharan and equatorial africa with lesser but significant prevalence in the middle east, india and mediterrianian regions.

High Oxygen affinity Haemoglobins: Extra Info

Hb Chesapeake:

- $(\alpha_2$ -92 ARG \rightarrow LEU β_2)
- Carriers are without clinical symptoms.
- Homozygous of erythrocytosis (polychemia) due to increased O2 affinity.
- The patients have no splenomegaly. (except for patient's with concomitant βthalassemia).
- They have normal WBC, and normal platelets.
- High Hb, High RBCs count and high haematocrit. (HCT).

Unstable Haemoglobins

Extra Info

Hb Köln $(\alpha_2\beta_2-98 \text{ VAL} \rightarrow \text{MET})$ **Hb Hammersmith** $(\alpha_2\beta_2 42 \text{ PHE} \rightarrow \text{SER})$ **Hb Hasharon** $(\alpha_2$ -47 ASP \rightarrow HIS β_2)

- These abnormal haemoglobin cause haemolysis in the newborn (congenital non-spherocytic haemolytic anaemia).
- Heinz body hemolytic anaemia with sensitivity to oxidant drugs, such as sulfonamides.
- Reticulocytosis out of proportion to the level of Hb.
- Increased formation of methemoglobin.
- · Spontaneous or drug induced haemolytic anaemia due to instability of the haemoglobin and consequent intracellular precipitation.
- Thalassaemia like peripheral blood picture.

Clinically: The patient have anemia, jaundice, splenomegaly / hepatomegaly and gall stones.

Low Oxygen affinity Haemoglobins:

Extra Info

More than 50 variants with reduced oxygen affinity have been identified.

Hb Kansas ($\alpha_2\beta_2$ 102 ASN \rightarrow THR)

Hb Aukland ($\alpha_2\beta_2$ 25 GLY \rightarrow ASP)

Rare as homozygotes.

Patients have anaemia and congenital cynosis due to reduced oxygen affinity.

Congenital methaemoglobinaemia

Extra Info

Hb M Boston (α 2 58 HIS \rightarrow TYR - β ₂)

Hb M Saskatoon ($\alpha_2\beta_2$ -63 HIS \rightarrow TYR)

Hb M Hyde park ($\alpha_2\beta_2$ -92 HIS \rightarrow TYR)

Hb M IWATE (α_2 -87 HIS \rightarrow TYR- β_2)

Cynosis in homozygotes due to congenital methaemoglobinaemia as a consequences of substitution of amino acids near or in the haem pocket.

Hb Indianapolis

- $(\alpha 2-\beta 2 \ 112 \ CYS \rightarrow ARG)$
- Is a rare and slightly unstable beta-globin variant.
- Carriers are clinically normal with only mild reticulocytosis.
- Homozygons have haemolytic anaemia and renal failure in severe cases.
- Thalassaemia-like syndrome due to marked instability of the Hb.

	<u>Normal Range</u>	<u>Note</u>
<u>Hb A</u>	95-97%	
<u>Hb A2</u>	2.5-3.5%	$<$ 1.5 = α -thalassemia $>$ 3.5 = β -thalassemia
<u>Hb F</u>	0.5-1.5%	
<u>Hb S</u>	Normally not present	<45 = Trait >45 = Sever

This is a control electrophoresis in which we have mixed different types of Hbs.

Hb F	Normal
Hb A	Normal
<u>Hb A2</u>	Normal
<u>Dx</u>	Normal

PRACTICAL HAEMATOLOGY

<u>Hb F</u>	Highly increased
Hb A	Absent
<u>Hb A2</u>	Normal
	Fetal Hb F or an abnormal hereditary persistence of fetal hemoglobin (HPFH).

<u>Hb F</u>	Absent, sometimes undetectable.
Hb A	Normal
<u>Hb A2</u>	Normal
<u>Dx</u>	Normal

432HematologyTeam

PRACTICAL HAEMATOLOGY

<u>Hb F</u>	Increased (Decreasing severity)
<u>Hb A</u>	Absent
<u>Hb S</u>	Increased
<u>Hb A2</u>	Increased
<u>Dx</u>	Sickle cell anemia with β-thalassemia and increased Hb f

Hb A	Absent
<u>Hb F</u>	Increased (>15% mild form of anemia)
Hb S	Increased
<u>Hb A2</u>	Decreased
<u>Dx</u>	Sickle cell anemia with α -thalassemia and increased Hb F.

Hb A	Decreased, post-transfusion
<u>Hb F</u>	Little increase (in severe cases, <15%)
<u>Hb S</u>	Present
Hb A2	Increased
<u>Dx</u>	Post-transfusion Sickle cell anemia with β -Thalassemia and increased Hb-F.

Hb F	Increased.
Hb S	Increased.
<u>Hb A2</u>	Normal.*
<u>Dx</u>	Sickle cells anemia with increased Hb F

^{*3.6} is considered relatively normal.

After Hb electrophoresis we do DNA analysis and family studies for further investigation (very important)

Sickle cell anemia

<u>TEST</u>	Blood film
<u>Findings</u>	1-Sickled RBC's.
	2-Target cells.
	3-Basophil.
	4-lymphocyte.
<u>Investigations</u>	Hb electrophoresis.
<u>Dx</u>	Sickle cell anemia.

β-Thalassaemia Major

<u>TEST</u>	Blood film
<u>Findings</u>	1-Erythroid precursor(immature RBC's or Nucleated RBC(NRBC)) 2-Target cell (codocyte) 4-Anisocytosis. (unequal sized RBC's) 5- poikilocytosis.
<u>Investigations</u>	Hb Electrophoresis, Genetic studies.
<u>Dx</u>	Beta thalassemia major

α-Thalassaemia

Haemoglobin H Disease

Haemoglobin C Disease

Hematology Team Leaders:

Ibrahim Abunohaiah

Roqaih Al-Dueb

432 Haematology Team

Good Luck^_^

اللهم إني استودعك ما قرأت و ما حفظت و ما تعلمت فرده عليَ عند حاجتي إليه انك على كل شيء قدير

If there is any mistake or feedback please contact us: 432PathologyTeam@gmail.com