Hematology

This lecture was done by 432 Physiology Team

Haemostasis in Health and Disease

432 Hematology Team

Done By: Fatma Al-Shehry Reviewed By: Mohammed Jameel

Color Index: Female notes are in Green. Male notes are in Blue. Red is important. Orange is explanation.

Haemostasis in Health and Disease

Hemostasis

Introduction

The most important feature of platelet disorders is presenting with bleeding "the dangerous one" or thrombosis.

Normally, there are 3 important factors to prevent bleeding:

- 1- Normal blood vessels.
- 2- Normal platelet count "150-400x10⁹/L" and they are also functioning normally.
- 3- Presence of clotting factors.

1- Hereditary vascular disorders:

- Hereditary Hemorrhagic Telangiectasia (Rendu-weber-osler syndrome).
 More common in old age abnormal blood vessel formation in the skin, mucous membranes (pic A)
 The common one worldwide"
- Kasabach-merritt syndrome (Haemangioma – Thrombocytopenia).
- Ehlers-Danlos syndrome.
- Pseudoxanthoma elasticum.
- Homocystinuria.
- Marfan syndrome.
- Osteogenesis imperfect.

A

2- Acquired Vascular Diseases:

- Allergic purpura (Henoch-Schonlein purpura).
- **Paraproteinemia and amyloidosis** here there is abnormal protein participates on the blood vessels.
- Senile purpura due to changes happen with increasing in age as the skin and the vessels become more fragile and is seen more commonly in old males as a dark purble discoloration especially in the hands and upper limps.
- Drug-induced vascular purpuras (Steroid therapy, sulfonamides, iodides, aspirin, digoxin, methyldopa, estrogen, allopurinol, penicillin and other antibiotics).
- Vitamin C Deficiency (Scurvy).
- Purpura simplex (Easy brusability).
- Psychogenic purpura.
- Purpura associated with infections as in DIC.

Normal platelets Count = 150-400x10 ⁹ /L			
Normal Platelet Size (MPV) =	7.3-11.1 Fl		
NORMAL PLATELET DIAMETER =	1-2.5 μ		
Normal Platelet Life Span =	7-10 DAYS		
Platelet Formation is by segmentation of the cytoplasm of the			
<u>Megakaryocyte</u> "The Mother of Platelets" in the bone marrow.			

[1] Megakaryocyte in the bone marrow has abundent purble cytoplasm which later fragmentate and gives the platelets <u>(one megakaryocyte gives 1000 platelets)</u>.
[2] Platelets appear in the peripheral blood film as small purble dots.

Structure of Platelet:

[1] It has storage granules include: Dense body – lysosomes – α -granule. [2] Contents of these granules.

Normal platelet membrane has these glycoproteins (Gp1b – Gpllb/llla – Gp1a) which is important in platelet adhesion along with vW factor

Haemostasis

Measurement of Platelet Function by:

1) <u>Bleeding time test</u> results is normally range from 3-8 min. (this test also measures vWF)

2) <u>Platelet aggregation test: is specific for platelets</u> and performed by adding some substances (e.g. collagen, ADP, Arachidonate, Ristocetin) to the platelets and the result of the reaction comes on graph.

DEFECTIVE PLATELET FUNCTION

A defect in function is suspected if there is **prolonged bleeding time** with or without skin or **mucosal hemorrhage** in the presence of **normal platelet count**. "From 430 team work"

<u>A\ Inherited disorders of platelet function:</u>

• Membrane abnormalities:

- Bernard Soluier syndrome which is common worldwide.
- Thrombasthenia also known as Glanzmann's disease and is more common in our region.
- Platelet factor 3 deficiency
- Intracellular abnormalities: 1+2+3
 - 1- Storage-pool (dense body) deficiency: Hermansky – Pudlak syndrome
 - Wiskott Aldrich syndrome
 - Chediak Higashi syndrome
 - Thrombocytopenia with absent radii
 - Idiopathic storage pool disease

B\Causes of Acquired Platelet Dysfunction:

Uraemia - Myeloproliferative disorders - Multiple Myeloma – Drugs e.g. Aspirin – Scurvy – Sever Burns – Valvular and congenital heart disease.

Thrombocytopenia "decreased platelets count":

Causes include:

1\ Failure of platelet production a+b

a- Selective megakaryocyte depression e.g.: <u>Rare congenital defects</u>, drugs, chemicals, viral infections.

b- Part of general bone marrow failure

Cytotoxic drugs, Radiotherapy, Aplastic Anaemia, Leukaemia, Myelodysplastic syndromes, Myelofibrosis, <u>Marrow infiltration (e.g. Carcinoma, Lymphoma</u> <u>and Multiple myeloma</u>), Megaloblastic anaemia, HIV infection.

Haemostasis

2\ Increased Consumption of Platelets in the peripheral circulation:

- a) Immune causes:
 - Autoimmune (idiopathic).
 - Associated with: systemic lupus erythematosus, chronic lymphocytic leukemia or Lymphoma.
 - Infections: HIV, other viruses, malaria.
 - Drug-induced (e.g. Heparin).
 - Post-transfusional purpura.
 - Feto-maternal alloimmune thrombocytopenia.
- b) Disseminated intravascular coagulation which is characteristic for M3 leukemia.
- c) Thrombotic thrombocytopenic purpura.
- d) Abnormal distribution of platelets (e.g. Splenomegaly) Normally 30% of platelets are trapped but in splenomegaly it will increase up to 70%
- e) Dilutional loss (e.g. massive transfusion of stored blood to bleeding patients).

Clinical features of immune thrombocytopenia (ITB):

It develops more commonly in children after infection

Degree of Thrombocytopenia	Symptoms	Physical findings
Mild (>50 000/mm ³) Moderate (30-50 000/mm ³)	None Bruising with minor trauma	None Scattered <u>ecchymoses</u> at trauma site
Severe (10-30 000/mm ³)	Spontaneous bruising. menorrhagia	Petechiae and purpura, more prominent on extremities
Marked (<10 000mm ³)	spontaneous brusing, mucosal bleeding, risk for CNS bleeding	Generalized purpura, epistaxis, GU bleeding CNS symptoms

ITB is associated with mucous membrane bleeding

Laboratory features of immune thrombocytopenia:

- Thrombocytopenia with increased numbers of large platelets (>2.5μ)
 The megakaryocytes lose control and produce platelets of different sizes
- In bone marrow examination, increased numbers and size of megakaryocytes.
- Reduced intravascular platelet survival due to increased turnover.
- Elevated levels of platelet-associated IgG which confirm the diagnosis.

Thrombotic thrombocytopenic purpura (TTP)- Hemolyticuremic syndrome (HUS):

Clinical Features:

- Fever.
- Thrombocytopenic purpura.
- Hemolytic anemia.
- Neurological symptoms.
- Renal dysfunction.

(It associates with other condition and also with genetic predisposition).

Causes:

- Infections (E.coli type 0157, Shigella dysenteriae serotype 1, and viral infection).
- Hypersensitivity.
- Oral contraceptive.
- Autoimmune diseases e.g. SLE and rheumatoid arthritis.
- Chemotherapy.

When patient comes for the first time and needs an immediate operation, doctor must do CBC and Coagulation profile which indicate:

- Prothrombin time (10-14s) \rightarrow covers the extrinsic pathway, mainly factor VII.
- Activated Partial Thromboplastin Time (30-40s) → covers the intrinsic pathway, measure factors XII, XI, IX and VIII.
- Thrombin time \rightarrow measures Fibrinogen.

HEMOPHILIA

There are 3 types of hemophilia:

- 1. Hemophilia A in factor VIII deficiency.
- 2. Hemophilia B in factor IX deficiency.
- 3. Hemophilia C in factor XI deficiency "newly discovered"

Correlation of coagulation factor activity and disease severity in hemophilia A or hemophilia B

Coagulation factor activity (percentage of normal)	Clinical manifestations
<1	Severe disease
	Frequent spontaneous bleeding episodes
	from early life
7	Joint deformity and crippling if not
· · · · · · · · · · · · · · · · · · ·	adequately teated
1-5	Moderate disease
	Post-traumatic bleeding
	occasional spontaneous episodes
5-20	Mild diesease
	Post-traumatic bleeding

Haemostasis

Some features of clinical manifestation in sever conditions:

Joint deformity

Interreticular bleeding "hemoarthrosis" and Intramuscular bleeding

Diagnosis of Haemophilia A & Von – Willebrand's			
Haemophilia A	W Disease		
Bleeding time normal	Bleeding time abnormal ★		
PT normal	PT normal		
PTT abnormal	PTT abnormal		
Factor VIII C↓	Factor VIII C ↓		
VWf : normal	vWf↓		
Factor VIII related antigen	vMF antigen ↓		
vMF antigen: normal			
Ristocetin co-factor normal	Ristocetin co-factor low		
Platelets aggregation	Platelets aggregation		
normal	abnormal ★		

Classification of vW disease:

Type 1: Partial quantitative deficiency

- Type 2: Qualitative deficiency (functional abnormality)
- Type 3: Complete quantitative deficiency

Treatment of Haemophilia

- 1. Factor VIII replacement therapy
 - a. <u>Immunoaffinity –purified Factor VIII preparation</u> Dose of Factor VIII to be infused (units) = <u>weight (kg) x</u> <u>increment needed (u/dL)/2</u>
 - b. Reconbinant Factor VIII (five different commercial preapartions)
- 2. DDAVP (desmopressin) I.V or S.C or nasal spray
- 3. Local supportive measures
- 4. Prophylactic treatment
 - Factor VIII three time / week
 - Vascular access device such as Port-a-Catch if venous access is difficult
- 5. Social and psychological care
- 6. Multidisciplinary team managementHaematologist, Dental, Orthopaedic , Physiotherapist
- 7. Gene therapy.

<u>Treatment of Von Willebrand</u> <u>Disease</u>

- a. Local measures
- b. Antifibrinolytic agent (tranexamic acid for mild bleeding)
- c. DDAVP infusion for type I VWD
- d. High purity factor VWF concentrates for patient with very low VWF levels
 - Factor VIII concentrate may also be given for more rapid correction.
- e. Social and psychological care.

Disseminated intravascular coagulation (DIC)

'CONSUMPTION COAGULATIONPATHY' DEFIBRINATION SYNDROME

There is Abnormal increased of fibrin in the circulation

Important causes include:

- Infections:

- Gram-negative and meningococcal septicemia.
- Clostridium welchii septicemia.
- Severe Falciparum malaria.
- Viral infection varicella, HIV, hepatitis, cytomegalovirus.

- Malignancy:

- Widespread mucin-secreting adenocarcinoma.
- Acute promyelocytic leukemia. (AML-M3)

Haemostasis

Screening Tests of Hemostasis:

Screening tests	Defects
B.T. Prolonged	Platelets (1 or dysfunction) + Von Willebrand's disease
APTT prolonged	Factors: XII, XI, VIII, IX, X, V, II, I
P.T. Prolonged	Factors: VII, X, V, II, I
T.T. Prolonged	Fibrinogen (Factor I) high FDPS
Reptilase time prolonged	Fibrinogen (factor I) high FDPS. Not effected by Heparin therapy
FDPS high	• D.I.C.
	Snake Bite
	 Thrombolytic therapy
	 Dysfibrinogenemia
Platelet Count Low	Thrombocytopenia
Platelet Count Normal	Platelet dysfunction

Summary

- The most important cause of hereditary disorders is Hemorrhagic Telangiectasia.
- Platelet Formation Is By Segmentation Of The Cytoplasm Of The Megakaryocyte in the bone marrow.
- Normal platelet membrane has these glycoproteins (GP1b Gpllb/llla Gp1a) which is important in platelet adhesion along with vW factor.
- There are 3 types of hemophilia: Hemophilia A in factor VIII deficiency. Hemophilia B in factor IX deficiency. Hemophilia C in factor XI deficiency.
- DIC.... there is Abnormal increased of fibrin in the circulation.
- Causes of DIC: 1- Infection
 - 2- Malignancy

Page | 11

Questions

- 1/ what is the most important cause of hereditary vascular disease?
 - A) Haemorrhagic Telangiectasia
 - B) Marfam syndrome
 - C) Homocystinuria

2/ Increased consumption of Platelets can cause which of the following?

- A) Thrombocytosis
- B) Leukocytosis
- C) Thrombocytopenia

3/ Hemophilia A is due to deficiency of which of the following factors?

- A) VI
- B) XII
- C) VIII

Answers:
- 1- A - 2- C - 3- C

If there is any mistake or feedback please contact us on: 432PathologyTeam@gmail.com

432 **Haematology** Team Leaders: Rogaih Al-Dueb & Ibrahim Abunohaiah

Good Luck! ^_^