

Haematology

Summary for the Important Points

Done By: Khulood Al-Raddadi

Normal Values (NV)

• RBCs:

- Hemoglobin(g/dL): Male = 13.5-17.5 Female = 11.5-15.5
 Red Cell Count (×10¹²): Male = 4.5-6.5 Female = 3.9-5.6
 Hematocrit (PCV) (%): Male = 40-52 Female = 36-48
- o Mean Cell Volume (MCV) (fL): 80-95
- o Mean Cell Hemoglobin (MCH) (pg): 27-34
- o Mean Cell Hemoglobin Concentration (MCHC) (g/dL): 30-35
- o Life span 120 days.

WBCs:

- WBC count ($\times 10^9/L$): = 4-11.
- \circ Neutrophils = 1.5-6.5 Lymphocyte = 1.2-3.4 Monocytes = 0.1-0.6 \circ Bands = 0-0.7 Eosinophils = 0-0.5 Basophils = 0-0.2

• Platelets:

- o Normal count (×10⁹/L): 150-400.
- o Life span: 7-10 days.
- Normal Platelet Size (MPV) (Fl) = 7.3-11.1

• Adult Hb: A
$$(\alpha 2 - \beta 2) = 95-97\%$$
A2 $(\alpha 2 - \delta 2) = 2.5-3.5\%$
Percentages in Adults

1- Normal types of Haemoglobin and Thalassaemia

• Hemoglobin formation:

Stage	Site of formation	Globin chain
Embryonic Stage first 2 months	Yolk sac	αζεγ
Fetal Stage 2nd to 7th month	Liver, spleen	αγ
Before Birth "7th month" until birth	Bone marrow	"β&δ in small amount"
After Birth + adulthood	Bone marrow	$oldsymbol{lpha} oldsymbol{eta}$ mainly $oldsymbol{\gamma} \ \& \ oldsymbol{\delta}$ in small amount

- Chromosome $16 \gg (\alpha + \zeta)$.
- Chromosome $11 >> (\epsilon \gamma \beta \delta)$.
- Alpha (α) chains are made of **141** amino acids.
- Beta (β) chains are made of **146** amino acids.
- Types of Hemoglobin: (Refer to the (NV) page 1).
 - o Adult Hb: **A** (α 2- β 2), **A2** (α 2- δ 2) and **F** (α 2- γ 2).
 - o Embryonic Hb: **Gower I Gower II Portland**.
 - Abnormal Hb: **H Bart's** (<0.5% at birth) **Lepore.**
- If Hb $A2 > 3.5 \rightarrow \beta$ thalassaemia (β is absent).
- If Hb A2 < 1.5 $\rightarrow \alpha$ thalassaemia (α is absent).
- Hb **F** is a fetal and adult hemoglobin.
- Hb **Bart's** is normal to present at birth in minimal amount (less than 0.5%), but it has to disappear after that or it will be abnormal (α thalassaemia).

\bullet α - THALASSAEMIA: (Normal: 4 copies of α-globin gene)

Silent carrier has 3 copies - **Trait** has 2 copies are **absent**. **Hydrops fetalis:** absence of all 4.

- Blood film: fragile, small size RBCs, target cells and hypochromic microcytic anemia.
- **HbH** α -thalassemia: Golf Ball cell Appearance and target cells (in supravital stain).

\clubsuit β - THALASSAEMIA: A2 > 3.5 %

β-thalassemia major : both alleles and HbA are absent, Hb <7 g/dl (very severe). β-thalassemia intermediate: two abnormal β+ alleles, Hb >7 g/dl (moderate to severe). β-thalassemia minor: one abnormal allele (trait, asymptomatic or mildly symptomatic). β-thalassemia minima (Silent like α thalassemia trait).

- **Blood film:** Target cells, <u>Nucleated RBCs</u> and hypochromic microcytic anemia.
- Clinical Manifestations: "Severe types of Thalassaemias: Hb H and β Thal. major "
 - Pallor and Jaundiced.
 - Hepato-splenomegaly and Skeletal Deformity.
 - Iron Overload manifestations.
 - <u>Thalassemic face</u> in β-thalassemia major.
 - Hair on ends appearance in x-ray.

Management:

- For further investigation (<u>DNA analysis</u>) and <u>electrophoresis</u> to confirm the diagnosis.
- Iron chelation therapy (<u>Deferiprone</u>) to Ψ iron overload.

2-Angemia

- (Refer to the (NV) page 1).
- All stages of the RBC can synthesize Hb, except for the last stage (erythrocyte).
- Highest amount of Hb synthesis occurs in intermediate normoblast stage.
- Hb carries O2 from the lungs to the body's tissues, and maintains the shape of RBC.
- Hematopoietic stem cell: 1- Self renewal 2- Cell differentiation (T. Factor: EPO GATA1).
- According to MCV: Microcytic Normocytic Macrocytic.
- According to MCH: Hypochromic Normochromic.
- Anemia of chronic disease is normocytic normochromic anemia.
- Symptoms appear if Hb less than 9g/dL.
- Clinical Features:
 - Weakness Headache Pallor Lethargy Dizziness (Related to anemia)
 - <u>Palpitation (tachycardia)</u> Angina Cardiac failure (compensatory mechanism)

Classification of Anaemia:

Defect in Results in		Type of Anaemia
Prophyrin	Sidroblastic anemia	
Iron	Iron def. anemia	Hypochromic microcytic anemia
Globin chain	Thalassemia	
DNA synthesis	Megaloblastic anemia - MDS	Macrocytic anemia
RBC count	◆ RBC count (Hemolysis)	Normocytic normochromic anemia

• Iron:

- Storage forms of iron in Liver and Macrophages: Ferritin Haemosiderin.
- Carried in the blood via transferrin in the ferric state.
- Hepcidin is produced in the liver & it is the major hormonal regulator of iron.
- Entering of Iron is controlled by <u>DMT-1</u> while Haem is controlled by <u>HCP-1</u>.
- Hepcidin has -ve effect on iron release and absorption.
- High level of hepcidin decreases the release of iron from the macrophages, and decreases iron absorption in the intestine.
- Factors favoring absorption: <u>Acid (vitamin C)</u> Pregnancy and Iron deficiency.
- Factor reducing absorption: <u>Tea</u>, alkalines and increased hepcidin level.

IDA (Iron deficiency Anemia):

- **Causes:** <u>GIT Bleeding</u> Immaturity Pregnancy.
- In IDA: Stores, MCV/MCH and Hemoglobin are LOW.
- In latent stage: Hb is normal while Stores and MCV/MCH are LOW.
- **Signs and symptoms:** anaemia +/- bleeding with:
 - o Koilonychia.
 - Angular stomatitis and/or glossitis.
 - Dysphagia (pharyngeal web "Plummer-Vinson syndrome")
- **Blood film:** Microcytic hypochromic anemia with:
 - o Anisocytosis (variation in size).
 - o Pokiliocytosis (variation in shape).
- Studies:
 - ↑ TIBC
 - \circ \checkmark Serum iron, serum ferritin and transferrin saturation.

- **Diagnosis:** Perl's stain (normally, iron appears blue).

Thalassemia is the opposite

3-Hemolysis and Haemoglobinopathies

• Types of Hemolysis:

- o (Intra-corpuscular Congenital Intravascular in the circulation) "like HbS".
- o (Extra-corpuscular Acquired Extravascular in the RES).

	Extravascular Hemolysis	Intravascular Hemolysis
Laboratory Features	↑ Serum unconjugated bilirubin ↑ Urine urobilinogen ↑ Faecal stercobilinogen ↑ LDH	Haemoglobinaemia Haemoglobinuria Haemosiderinuria

It is important to understand the picture in slide 7 and make sure you go through all the labels in it.

• Haemolytic Anaemia:

- o Congenital:
 - Sickle cell disease
 - Enzymopathies.
- o Acquired: Red cell fragmentation syndrome, cardiac valves and a lot of diseases.
- **Hb C:** α 2 β 2 6 GLU \rightarrow LYS.
- Sickle Cell Anaemia "HbS": $\alpha 2 \beta 2 6$ -GLU \rightarrow VAL
 - Clinical Manifestations:
 - Foot and hand syndrome.
 - <u>Leg ulcer.</u>
 - Short middle finger.
 - Hair on end (X-Ray).
 - o Laboratory Diagnosis:
 - CBC: Low Hb.
 - **Blood Film:** irreversible sickle cells, target cells and normocytic normochromic anemia.
 - Sickle Solubility Test: +ve.
 - <u>Hb Electrophoresis</u>.
 - Genetic Study.
 - Indications for:
 - Blood Transfusion:
 - Severe <u>painful crisis</u> associated with severe <u>haemolysis</u>.
 - Pregnancy.
 - o Patient with Sickle cell anemia have high risk of Salmonella "infections in general".

4-White blood cells

- Most important regulating factors are for hematopoiesis: SCF (Stem cell factor) & FLT3-L.
- G-CSF can be given clinically to stimulate the hematopoiesis in severe neutropenia.
- EPO is given in severe anemia to stimulate RBCs production.
- (Refer to the (NV) page 1).

• Neutrophils:

- \circ (2–5 lobes) Short lived (≈6 days) and highly motile.
- o Chemotaxis: IL-8, TNF γ & C5a.
- o <u>Killing Mechanisms</u>:
 - Intracellular: Phagocytosis (Superoxide Hydrogen peroxide).
 - Extracellular: Degranulation (Lysozyme, NADPH oxidase and MPO) and NETs.
- Leukemoid reaction: (neutrophilia with left shift) \rightarrow sign of infection.
 - Associated with: <u>Toxic granulation</u> <u>Vaculation</u> <u>Döhle bodies</u>.

• Lymphocytes:

- o Important in the immune system
- o Composed of: T-cells B-cells NK cells.

Monocytes:

- o Single well-defined nucleus and very fine granulation.
- Matures into different types of macrophages

• Eosinophils:

- Nucleus with two lobes and bright red coarse cytoplasm
- o Functions: Anti-Parasitic allergic reactions

Basophils:

- o Bluish-black granules and mature to tissue mast cells
- o Functions: release Heparin and Histamine allergic reactions

Causes of abnormalities:

Situation	Important Causes	
Neutrophilia (>6.5)	Benin: Bacterial infection. Malignant: Chronic Myeloid leukemia (CML).	
Neutropenia (≤ 0.5)	<u>Congenital</u> : Kostmann syndrome - Benign neutropenia - Cyclical neutropenia. Aplastic anemia, SLE and some bacterial infections (Typhoid).	
Lymphocytosis	Viral infection: <u>infectious mononucleosis (IMN).</u> Bacterial infection: Pertussis, tuberculosis and brucellosis. <u>Chronic lymphocytic leukemia (CLL).</u>	
Monocytosis	Chronic infection: (TB, Brucellosis). <u>Acute leukemia (AML M5).</u> Chronic Myelomonocytic leukemia (CMML).	
Monocytopenia	Hairy cell leukemia (HCL).	
Eosinophilia	C H I N A = all the causes. Important ones: Idiopathic "Hypereosinophilic syndrome", eosinophilic leukaemia and MPN " Myeloproliferative neoplasm".	
Basophilia	Neoplasia (CML).	
Leukoerythroblastic	Primary Myelofibrosis.	

5-Megaloblastic Anemia

- (Refer to the (NV) page 1).
- Microcytic, Hypochromic Anemia: Iron deficiency, sideroblastic anemia and thalassemia.
 - \circ If MCV < 80 fL (Low) and MCH <27pg (Low).
- **Normocytic, Normochromic Anemia:** renal disease.
- Macrocytosis with Normoblasts: Chronic alcoholism MDS Chronic liver disease.
- **Macrocytosis:** Alcohol, Liver disease, Reticulocytosis, Hypothyroidism, Myelodysplasia, Pregnancy and Newborn.
- **❖ Megaloblastic Anemia:** (Abnormal synthesis of DNA).
 - Causes:
 - o Cobalamin (vitamin B12) deficiency.
 - o Folate deficiency.
 - o Drugs: hydroxyurea and anitfolate drugs (e.g. methotrexate).
 - Vitamin B12 and Folate are stored in the liver.

	Vitamin B12	Folate
Time to develop deficiency	2-10 years	5 months
for absorption	IF and TC2	Intestinal folate conjugase
Site of absorption	Terminal ileum	Duodenum and jejunum

- Causes of deficiencies are due to defect in the <u>factors</u>, <u>receptors or sites of absorption</u>, e,g: Inadequate intake, Veganism, inadequate secretion of intrinsic factor, total or partial gastrectomy, malabsorption and congenital intrinsic factor deficiency.
- Vitamin B12 deficiency: ↑ <u>Homocysteine level</u>, ↓ Methionine → abnormalities in CNS.
- Clinical Features:
 - Neuropathy due to vit. B12 "mainly" and folate deficiency:
 - Subacute combined degeneration of the cord and psychiatric symptoms.
 - o Neural tube defect (NTD): due to deficiencies of both in the mother.
 - Spina bifida.
 - Genetic mutation in 5, 10 methylene tetrahydrofolate reductase \rightarrow NTD.
- Neuropathy and hypersegmented neutrophils are classical to Vitamin B12 deficiency.
- Hematological findings:
 - o Blood film: "Peripheral Blood":
 - Oval macrocytes. "large cells"
 - High MCV.
 - Hypersegmented neutrophils. "B12 def."
 - o Bone Marrow:
 - Giant and abnormally shaped megakaryocytes.
 - Hypercellular marrow.
 - Megaloblast (large erythroblast).
- Treatment:

	Vitamin B12	Folate
Compound Hydroxocobalamin		Folic acid
Route	Intramuscular	Oral
Prophylactic Total gastrectomy Ileal resection		Daily in Pregnancy – Hemolysis Dialysis - Prematurity

6-Acute Leukemia

- It differs from Chronic in the presence of blasts in the peripheral blood "Acute Leukemia".
- AL is in blasts (precursors) while CL is mainly in mature cells.
- Mutations Block differentiation + Enhance proliferation + Decrease apoptosis.
- Defect in Myeloid stem cell \rightarrow AML while Lymphoid stem cell \rightarrow ALL.
- AML mainly in Adults "worse" While ALL mainly in children.

AML: (usually in Adult)

- Blasts should count 20% or more of total cells.
- Myeloblasts (AML) have granular cytoplasm and <u>Auer rods</u>, while Lymphoblasts (ALL) have a granular cytoplasm and May be vacuolated (like in L3).
- Stem Cell Markers: (CD34 & TDT).
- Main lineage markers are:
 - Myeloid: MPO CD13 CD33 CD14 CD41 CD64 CD235a
 - B-Lymphoid: <u>CD10</u> <u>CD19</u> CD22 CD79a
 - T-Lymphoid: <u>CD3</u> CD4 CD5 CD7 CD8
- Subtypes of AML (M0-M8) + cytogenetic abnormalities.
- **FAB Classification:** (Based on Morphology and Flow Cytometry)

FAB	Features	GENETICS	Molecular
M2	Maturation	t(8,21)	AML1-ETO
M3	Promyelocytic	t(15,17)	PML-RARA
M4	Granulocytic & monocytic	t(16,16) or Inv(16,16)	CBFB-MYH11
M5	Monoblastic - Monocytic	t(9,11) MLLT1-MLL	
FAB	Features	MARKERS	
M6	Erythroid	CD235a	
M7	Megakaryocytic	CD41	

- **WHO Classification:** (Based on <u>Genetics</u> "Immunophenotype")
 - AML with recurrent genetic abnormalities has a good prognosis.
- Clinical Features:
 - Myeloid sarcoma <u>Gum hypertrophy</u> CNS disease (M4-M5)
 - <u>DIC</u>: Widespread activation of coagulation system (M3)
- Prognosis: is good with:
 - t(8;21), inv(16;16) or t(15;17)
 - Less than 60 yrs.
- **Chemotherapy Treatment**: all have the same protocol except M3: target "ATRA"

ALL: (usually in Adult):

- Malignant lymphoid blasts.
- Subtypes of ALL (T or B cell).
- B-ALL has a better prognosis, especially: CD10 and t(12:21) "ETV6-RUNX1".
- L3 "Burkitt's" shows Vacculated cytoplasm and t(8,14) mutation.
- CNS relapse + Mediastinal mass (T-ALL).

7-Lymphoproliferative Disorders

- Causes:
 - o Benign:
 - Acute: viral e.g. <u>infectious mononucleosis (IMN).</u>
 - Protozoal infections: toxoplasmosis and malaria.
 - Chronic infections: e.g. tuberculosis, syphilis.
 - o **Malignant:** Chronic Lymphocytic Leukaemia (CLL).
- Infectious Mononucleosis (IM):
 - Epstein-Barr virus (EBV) \rightarrow B-cell proliferation \rightarrow T-cell proliferation \rightarrow Viremia.
 - Laboratory Findings:
 - Atypical lymphocytes (due to proliferation of T cells not B cells).
 - EB virus specific (IgG).
- Pro-lymphocyte leukemia (PLL) \rightarrow not a blast, it is a stage before maturation.
- Chronic Lymphocytic Leukaemia (CLL):
 - o Proliferation of mature lymphocytes usually B lymphocytes.
 - Usually in elderly >60 and common in males.
 - o <u>Herpes Zoster</u> infection mainly is seen with CLL.
 - Laboratory Features:
 - **Blood film**: Mature lymphocytes and smudge (smear) cells.
 - **V** Immunoglobulin levels.
 - **↑** Uric Acid.
 - Presence of anemia or thrombocytopenia with Lymphocytosis indicates advanced stage) → <u>Rechter's syndrome</u>.
 - o <u>Diffuse involvement</u> of bone marrow has a <u>poor</u> prognosis (local is good).
- Hairy Cell Leukaemia (HCL): Massive splenomegaly and monocytopenia.
- CD19 and SIg are +ve in CLL, PLL, HCL, FL and MCL (all cases of lymphoma).
- CD103 is +ve in HCL.
- In CLL: SIg and CD5 are +ve but CD22/FMC7 and CD79b are -ve.
- In MCL: all are +ve.
- Hodgkin's Lymphoma:
 - o Multinucleated cell which is Reed Sternberg.
 - o Positive for CD 15 and CD 30.
- **Sezary syndrome** (cleft nuclei) and **T-cell cutaneous lymphoma** are malignancies of T-Cell, characterized by red man syndrome.

8-Chronic Leukemia

- CL occurs mainly in adults.
- Myeloproliferative Neoplasms (MPN) (Cytosis): CML PV ET PMF.
 - o Malignancy of myeloid cells (maturing cells) which are mainly granulocytes.
 - o BCR-ABL1 is positive only in CML. Others are negative.
 - Clinical Features:
 - Organomegaly.
 - Progression to AML.

• Chronic Myeloid Leukemia (CML):

- o Predominant proliferation of granulocytic cells (Cytosis).
- o Between the ages of 40 and 60.
- o BCR-ABL1 gene fusion in the (Ph) chromosome which results from t(9,22).
- \circ The gene has a tyrosine kinase activity \rightarrow uncontrolled proliferation.
- Clinical presentation:
 - Marked leukocytosis, usually Neutrophilia.
 - Splenomegaly (Massive)
- o NAP score is low in CML and high in the leukemoid reaction.
- o Phases:
 - Chronic: Blasts ≤10%, Basophils ≤ 20% stable.
 - Accelerated: 10-19% blasts (basophils ≥20%) unstable.
 - Blastic: \geq 20% blasts \rightarrow AML.
- o **Treatment:** TKIs: Imatinib (Trade name: Gleevec).

Myelodysplastic syndrome (MDS):

- Hypercellular bone marrow but <u>pancytopenia</u> in blood \rightarrow No splenomegaly.
- Variable genetic abnormalities mainly -5 and -7.
- Chronic myelomonocytic leukemia (CMML): (monocytes and neutrophils).
 - o MDS/MPN disease (Combination of both).
 - Features of MDS (dysplasia & enhanced apoptosis).
 - Features of MPN (marked proliferation).
 - o Philadelphia chromosome must be negative.
 - CMML is -ve for BCR-ABL.
 - o Blast must be less than 20%, if 20% and above \rightarrow acute leukemia.
- MPN (CML) \rightarrow Cytosis MDS \rightarrow Cytopenia MPN/MDS (CMML) \rightarrow Cytosis + Cytopenia.

9-MPN (PV - ET - PMF)

- BCR-ABL1 is positive only in CML. Others are negative.
- Polycythemia Vera (PV): "Primary Polycythemia"
 - o Increase in total body red cell volume due to malignant proliferation.
 - o (Refer to the (NV) page 1).
 - \triangle Hb (>16.5 in women or >18.5 in men) or \triangle packed cell volume (PCV).
 - o Primary Polycythemia: Ψ EPO but Normal plasma.
 - In 2nd Polycythemia: normal plasma but High EPO due to smoking or COPD.
 - In relative Polycythemia: plasma is low and RBCs is normal (dehydration).
 - Clinical and Laboratory Features:
 - JAK2 mutation in >95% \uparrow Hb \downarrow EPO
 - Splenomegaly in 70% Thrombosis ↑ viscosity
 - Investigations:
 - **CBC**: ↑ Hb and ↑ RBCs.
 - Blood smear: Excess of normocytic normochromic RBCs.
 - **Bone marrow:** <u>Hypercellular bone marrow</u> "high filtration".
 - \circ \land Blasts \rightarrow AML transformation.
 - **Treatment:** Venesection + Aspirin ± Myelosuppressive drugs (hydroxyuria).

Essential Thrombocythemia (ET):

- Neoplasm that involves primarily the megakaryocytic lineage & characterized by sustained thrombocytosis $\geq 450 \times 10^9$.
- o Exclusion of: CML, MDS, PV, PMF and reactive thrombocytosis.
- o <u>IAK2 mutation</u> (60%).
- Very indolent (5% risk of AML transformation).
- Clinical presentation: Asymptomatic (50%) Thrombosis Bleeding Mild splenomegaly (50%).
- o **Treatment:** Aspirin with or without Hydroxyuria.

• Primary Myelofibrosis (PMF):

- o Proliferation of megakaryocytes & granulocytes.
- o **Blood picture**:
 - <u>Leukoerythroblastic</u> (Nucleated red blood cells and immature leukocytes).
 - Tear-drop cells.
- o **Bone marrow:** Deposition of fibrous connective tissue "Fibrotic bone marrow".
- Massive splenomegaly.
- o <u>JAK2 mutation</u> (50%).
- o Risk of AML transformation (20%).

JAK2 mutation:

- Specific to 3 diseases: PV (95%) ET (60%) PMF (50%).
- o Point mutation leads to loss of auto inhibitory control over JAK2.
- The mutated JAK2 is in a constitutively active state →Increased proliferation and Decreased apoptosis.

10-Blood Groups

• Before donation:

- o Hb (males>13, females>12).
- Weight > 50k and age (17-70) yrs.
- ABO,H is the most important Blood Group, Rh is the 2nd one.

	Gr A	Gr B	Gr AB	Gr O
Cell type	A	В	AB	0
Ab	Anti- B	Anti- A	None	Both
Ag	A	В	Both	None

Gene	Allele	Transferase
A	A	galactosaminyl
В	В	galactosyl
0	0	None

- Commonest blood group is 0 then group A.
- O receives transfusion from O only, and donates to all the other types.
- AB receives transfusion from all types, but only donates to AB.
- Rh+ groups can receives from Rh+ and Rh-, but Rh- receives Rh- only.
- Genotype: A (AA or AO), B (BB or BO), AB (AB), O (OO).

• Blood Transfusion:

Blood Compatibility Testing (Crossmatch):

- Front Type: determines antigens "this method is preferable".
- Back Type: identifies Antibody.
- o **Rh phenotypes:** (Rh +ve or Rh -ve).
 - 2 genes control it: D and Ce (D is dominant).
 - 32.68 % of population has DCe/dce/R¹r.
- o **Mandatory Tests** on All Units of Blood:
 - ABO group, Rh type and blood-group antibodies.
 - Serologic test for syphilis, retroviruses and hepatitis

After donation:

- RBCs are stored in fridge in 2 to 6 degrees for 35 days.
- Platelets are stored in room temperature 20-25 degrees for 5 days with agitation.
- Plasma is stored in the freezer -30 degree for 1 year (Clotting factors).
- **Complications** of Blood Transfusion: infections and hemolytic reaction.
- **Investigation** of a Hemolytic Transfusion Reaction: Clerical checks.

11- Haemostasis

- Malignancy of platelets: ET and M7.
- (Refer to the (NV) page 1).
- **Formation:** Segmentation of the cytoplasm of the megakaryocyte in the BM.
- **Controllers:** Lysosomes, Dense body and α -granules.
- GPIa attached directly to the collagen but GPIb, GPIIb and GPIIIa attached through VWF.
- If VWF get diseased \rightarrow GPIb, GPIIb and GPIIIa will be affected.
- **Bleeding time:** 3-8 minutes. It is associated with platelets functions and VWF not with the clotting factors.
- Clotting Factors activities are measured by PT and APTT.
- Extrinsic pathway is measured by PT (10-14 sec), intrinsic by APTT (30-40 sec).
- Extrinsic pathway covers factor <u>3 and 7</u>, intrinsic covers <u>12</u>, <u>11</u>, <u>9 and 8</u>.
- Common pathway covers factor <u>2</u>, <u>5</u> and <u>10</u>.
- We do **Coagulation Profile**, if:
 - \circ PT is prolonged \rightarrow problem with the Extrinsic pathway.
 - \circ APTT is prolonged \rightarrow problem with the Intrinsic pathway.
 - Both are prolonged → problem with the common pathway.
- **Hereditary vascular disorder:** Hereditary Haemorrhagic Telangiectasia.
- **Acquired vascular Disorder:** Allergic purpura Paraproteinemia and amyloidosis Vitamin C Deficiency (Scurvy).
- Inherited disorders of platelet function:
 - Membrane abnormalities:
 - Bernard Soluier syndrome "Gp1b-IX-V deficiency" (-ve for Ristocetin).
 - Glanzmann Thrombasthenia "Gp llb/llla deficiency" (+ve for Ristocetin).
 - α- granule deficiency:
 - Gray platelet syndrome.
- Acquired disorders of platelet function: a lot of diseases.
- Causes of Thrombocytopenia: Autoimmune (ITP) DIC.
 - 1- Immune Thrombocytopenia (ITP):
 - Laboratory features:
 - Increased numbers and size of megakaryocytes.
 - Reduced platelet life span.
 - Elevated levels of IgG.

2- Disseminated Intravascular Coagulation (DIC): (↑FDPS)

- Causes:
 - Infections.
 - Malignancies: (AML-M3)

• Haemophilia A and B:

- o If the coagulation factor activity $<1 \rightarrow$ Severe disease, joint deformity and crippling and spontaneous bleeding episodes.
- o Haemophilia A is due to defect in factor 8 while Haemophilia B in factor 9.

Haemophilia A	VW Disease
Normal bleeding time	Abnormal bleeding time
Normal platelets aggregation	Abnormal platelets aggregation

• Von-Willebrand disease:

- Classification:
 - Type1: Quantitative partial deficiency.
 - Type2: Functional abnormality.
 - Type3: complete deficiency.
- Screening Tests of Hemostasis: الزبرة هنا

ST	Result	Defects
APTT	Prolonged	Factor 12-11-8-9
PT	Prolonged	Factor 7
TT	Prolonged	Factor 1 (Fibrinogen)
FDPS	High	DIC
Platelets count Normal		Platelets dysfunction

"If your ship doesn't come in, swim out to meet it!" J.w.

