HAEMOGLOBINOPATHIES

DR. FATMA AL-QAHTANI

Consultant Haematologist

Hemolysis:

- Premature destruction of RBCs.
- Hemolysis could be due to:
 - a. Defect in the RBCs (intra-corpuscular) as in congenital hemolytic Anaemia.
 - b. Defect in the surrounding environment (extracorpuscular) as in acquired Anaemia.

Clinical Features of Hemolysis

Pallor, lethargy **Jaundice Splenomegaly** Gall stones (Pigment – bilirubin) Dark urine (urobilinogen) Bone deformity (In some types of haemolytic anaemia) Leg ulcers (in some types of haemolytic anaemia).

Laboratory Features of Hemolysis

- 1. Features of increased red cell breakdown.
 - a. ↑ serum bilirubin is raised(unconjugated and bound to albumin).
 - b. ↑ urine urobilinogen.
 - c. † faecal stercobilinogen.
 - d. Absent serum haptoglobins.
 - e. ↑ lactate dehydrogenase (LDH)

Laboratory Features of Hemolysis

- 2. Features of increased red cells production.
 - a. Reticulocytosis
 - b. Bone marrow erythroid hyperplasia.
- 3. Damaged red cells.
 - a. Morphology (e.g. microspherocytes, elliptocytes, red cells fragmentation).
 - b. Increased osmotic fragility, autohaemolysis etc).
 - c. Shortened red cell survival (This can be shown by ⁵¹Cr labeling with study of the sites of destruction.

Intravascular and extravascular haemolysis.

- a. Intravascular haemolysis, the process of breakdown of red cells directly in the circulation.
- b. Extravascular haemolysis excessive removal of red cells by cells of RE system in the spleen and liver.

The main laboratory features of intravascular haemolysis are as follows:

- 1. Haemoglobinaemia and haemoglobinuria.
- 2. Haemosiderinuria (Iron storage protein in the spun deposit of urine).

Causes of intravascular haemolysis

Mismatched blood transfusion (usually ABO) **G6PD** deficiency with oxidant stress Red cell fragmentation syndromes Some autoimmune haemolytic anaemias Some drug-and infection-induced haemolytic anaemias Paroxysmal nocturnal haemoglobinuria March haemoglobinuria

Unstable haemoglobin

HAEMOLYTIC ANAEMIA

CONGENITAL SICKLE CELL DISEASE & OTHER HAEMOGLOBIN DISORDERS **THALASSAEMIAS ENZYMOPATHIES MEMBRANOPATHIES AQUIRED**

Classification Of Haemolytic Anaemias

Hereditary	Acquired
Haemoglobin	Allografts, especially marrow transplantation
Abnormal (Hb S, Hb C, unstable)	drug associated
Thalassaemia	Red cell fragmentation syndrome
Membranopathy	Arterial grafts, cardiac valves
Enzymopathy	Microangiopathic
	Thrombotic thrombocytopenic purpura
	Haemolytic uraemic syndrome
	Meningococcal sepsis
	Pre-eclampsia
	Disseminated intravascular coagulation
	March haemoglobinuria
	Infections
	Malaria, clostridia
	Chemical and physical agents
	Especially drugs, inductrial/domestic substances, burns
	Secondary
	Liver and renal disease
	Paroxysmal nocturnal haemoglobinuria

RED CELL SURVIVAL MEASUREMENTS

Abnormal haemoglobins (Haemoglobinopathies)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 VAL-HIS-LEU-THR-PRO-GLU-GLU-LYS-SER-ALA-VAL-THR-ALA-LEU-TRY

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 GLY-LYS-VAL-ASN-VAL-ASP-GLU-VAL-GLY-GLY-GLU-ALA-LEU-GLY-ARG

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 LEU-LEU-VAL-VAL-TYR-PRO-TRY-THR-GLN-ARG-PHE-PHE-GLU-SER-PHE

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 GLY-ASP-LEU-SER-THR-PRO-ASP-ALA-VAL-MET-GLY-ASN-PRO-LYS-VAL

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 LYS-ALA-HIS-GLY-LYS-LYS-VAL-LEU-GLY-ALA-PHE-SER-ASP-GLY-LEU

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 ALA-HIS-LEU-ASP-ASN-LEU-LYS-GLY-THR-PHE-ALA-THR-LEU-SER-GLU

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 LEU-HIS-CYS-ASP-LYS-LEU-HIS-VAL-ASP-PRO-GLU-ASN-PHE-ARG-LEU

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 LEU-GLY-ASN-VAL-LEU-VAL-CYS-VAL-LEU-ALA-HIS-HIS-PHE-GLY-LYS

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 GLU-PHE-THR-PRO-PRO-VAL-GLN-ALA-ALA-TYR-GLN-LYS-VAL-VAL-ALA

136 137 138 139 140 141 142 143 144 145 146 GLY-VAL-ALA-ASN-ALA-LEU-ALA-HIS-LYS-TYR-HIS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 VAL-LEU-SER-PRO-ALA-ASP-LYS-THR-ASN-VAL-LYS-ALA-ALA-TRY-GLY

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LYS-VAL-GLY-ALA-HIS-ALA-GLY-GLU-TYR-GLY-ALA-GLU-ALA-LEU-GLU

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 ARG-MET-PHE-LEU-SER-PHE-PRO-THR-THR-LYS-THR-TYR-PHE-PRO-HIS

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 PHE-ASP-LEU-SER-HIS-GLY-SER-ALA-GLN-VAL-LYS-GLY-HIS-GLY-LYS

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 LYS-VAL-ALA-ASP-ALA-LEU-THR-ASN-ALA-VAL-ALA-HIS-VAL-ASP-ASP

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 MET-PRO-ASN-ALA-LEU-SER-ALA-LEU-SER-ASP-LEU-HIS-ALA-HIS-LYS

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 LEU-ARG-VAL-ASP-PRO-VAL-ASN-PHE-LYS-LEU-LEU-SER-HIS-CYS-LEU

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 LEU-VAL-THR-LEU-ALA-ALA-HIS-LEU-PRO-ALA-GLU-PHE-THR-PRO-ALA

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 VAL-HIS-ALA-SER-LEU-ASP-LYS-PHE-LEU-ALA-SER-VAL-SER-THR-VAL

136 137 138 139 140 141 LEU-THR-SER-LYS-TYR-ARG

Some Known Haemoglobin Mutants

NAME	SUBSTITUTION			
Hb. S	$\alpha 2 \beta 2 6 \text{ GLU} \rightarrow \text{VAL}$			
Hb. C	$\alpha 2 \beta 2 6 GLU \rightarrow LYS$			
Hb. E	$\alpha 2 \beta 2$ 26 GLU \rightarrow LYS			
Hb. O ARAB	$\alpha 2 \beta 2$ 121 GLU \rightarrow LYS			
Hb. D PUNJAB	α2 β2 121 GLU → GLN			
Hb RIYADH	$α2 β2 120 LYS \rightarrow ASN$			
Hb. HAMMERSMITH	$α2 β2$ 42 PHE \rightarrow SER			
Hb. N. BALTIMORE	α2 β2 95 LYS → GLU			
Hb. KORLE-BU	$α2 β2 73 ASP \rightarrow ASN$			
Hb. K. WOOLWICH	$α2 β2 132 LYS \rightarrow GLN$			
Hb. K. IBADAN	$\alpha 2 \beta 2 46 \text{ GLY} \rightarrow \text{GLU}$			
Hb. KÖ LN	$α2 β2 98 VAL \rightarrow MET$			
Hb. J. BALTIMORE	$α2 β2 16 GLY \rightarrow ASP$			

Some Known Haemoglobin Mutants

NAME	SUBSTITUTION		
Hb. G. PHILADELPHIA	$\alpha 2 68 \text{ ASN} \rightarrow \text{LYS} \beta 2$		
Hb. ZAMBIA	α 2 60 LYS \rightarrow ASN β2		
Hb. G. CHINESE	α 2 30 GLU \rightarrow GLN β2		
Hb. HASHARON	$\alpha 2 47 \text{ ASP} \rightarrow \text{HIS} \beta 2$		
Hb. J. TONGARIKI	α 2 115 ALA \rightarrow ASP β2		
Hb. J. OXFORD	$\alpha 2 15 \text{ GLY} \rightarrow \text{ASP} \beta 2$		
Hb. NORFOLK	α 2 57 GLY \rightarrow ASP β2		

DNA Coding for the Amino-Acid in the sixth position in the β-chain

Normal

	5	6	7
Amino Acid	pro	gl <u>u</u>	glu
DNA Base Composition	CCT	GAG	GAG
Sickle			
DNA Base composition	CCT	$\mathbf{G}_{\mathbf{T}}\mathbf{G}$	GAG
Amino Acid	pro	val	glu
	5	6	7

HbA...Val – His – Leu – Thr – Pro – Glu – Glu – Lys ...

HbSVal – His – Leu – Thr – Pro – Val – Glu – Lys

HbC ... Val – His – Leu – Thr – Pro – Lys Glu – Lys ...

Amino acid sequences of the peptides 4 in haemoglobins A, S and C.

HAEMOGLOBIN VARIANTS: GENE DISTRIBUTION

SICKLE CELL DISEASE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 VAL-LEU-SER-PRO-ALA-ASP-LYS-THR-ASN-VAL-LYS-ALA-ALA-TRY-GLY

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LYS-VAL-GLY-ALA-HIS-ALA-GLY-GLU-TYR-GLY-ALA-GLU-ALA-LEU-GLU

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 ARG-MET-PHE-LEU-SER-PHE-PRO-THR-THR-LYS-THR-TYR-PHE-PRO-HIS

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 PHE-ASP-LEU-SER-HIS-GLY-SER-ALA-GLN-VAL-LYS-GLY-HIS-GLY-LYS

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 LYS-VAL-ALA-ASP-ALA-LEU-THR-ASN-ALA-VAL-ALA-HIS-VAL-ASP-ASP

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 MET-PRO-ASN-ALA-LEU-SER-ALA-LEU-SER-ASP-LEU-HIS-ALA-HIS-LYS

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 LEU-ARG-VAL-ASP-PRO-VAL-ASN-PHE-LYS-LEU-LEU-SER-HIS-CYS-LEU

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 LEU-VAL-THR-LEU-ALA-ALA-HIS-LEU-PRO-ALA-GLU-PHE-THR-PRO-ALA

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 VAL-HIS-ALA-SER-LEU-ASP-LYS-PHE-LEU-ALA-SER-VAL-SER-THR-VAL

136 137 138 139 140 141 LEU-THR-SER-LYS-TYR-ARG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 VAL-HIS-LEU-THR-PRO-GLU-GLU-LYS-SER-ALA-VAL-THR-ALA-LEU-TRY

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 GLY-LYS-VAL-ASN-VAL-ASP-GLU-VAL-GLY-GLY-GLY-GLU-ALA-LEU-GLY-ARG

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 LEU-LEU-VAL-VAL-TYR-PRO-TRY-THR-GLN-ARG-PHE-PHE-GLU-SER-PHE

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 GLY-ASP-LEU-SER-THR-PRO-ASP-ALA-VAL-MET-GLY-ASN-PRO-LYS-VAL

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 LYS-ALA-HIS-GLY-LYS-LYS-VAL-LEU-GLY-ALA-PHE-SER-ASP-GLY-LEU

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 ALA-HIS-LEU-ASP-ASN-LEU-LYS-GLY-THR-PHE-ALA-THR-LEU-SER-GLU

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 LEU-HIS-CYS-ASP-LYS-LEU-HIS-VAL-ASP-PRO-GLU-ASN-PHE-ARG-LEU

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 LEU-GLY-ASN-VAL-LEU-VAL-CYS-VAL-LEU-ALA-HIS-HIS-PHE-GLY-LYS

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 GLU-PHE-THR-PRO-PRO-VAL-GLN-ALA-ALA-TYR-GLN-LYS-VAL-VAL-ALA

136 137 138 139 140 141 142 143 144 145 146 GLY-VAL-ALA-ASN-ALA-LEU-ALA-HIS-LYS-TYR-HIS

DNA Coding for the Amino-Acid in the sixth position in the β-chain

Normal

	5	6	7	
Amino Acid	pro	glu	glu	
DNA Base Composition	CCT	$\mathbf{G}\mathbf{A}\mathbf{G}$	G A G	
				_
Sickle				
			~ ~	
DNA Base composition	CCT	$\mathbf{G}_{\mathbf{T}}\mathbf{G}$	G A G	
Amino Acid	pro	val	glu	
	5	6	7	

1910 1st published report of sickle cell anaemia (Herrick)

1949 Pauling et al : chemical difference between HbA and HbS

1956 Ingram: Fingerprinting βglu → val

SICKLE CELL DISEASE

THE SICKLE CELL TRAIT
HOMOZYGOUS SICKLE CELL DISEASE (SS)
Sickle cell anaemia

DOUBLY HETEROZYGOUS SICKLE CELL DISEASE
Sickle cell / haemoglobin C disease
Sickle cell / thalassaemia

PROPERTIES OF HbS

Solubility \

Conformational changes — "tactoid formation"

→ sickled cells

→ irreversibly sickled cells

↑ mechanical fragility → haemolysis

viscosity - organ infarction

FACTORS AFFECTING SICKLING

Oxygen tension 50–60 mm Hg for SS 20–30 mm Hg for AS

pH — inhibited at alkaline pH exacerbated by acidification

Concentration of HbS

Presence of other haemoglobins

polymerisation: S > D > C > J = A > F

FACTORS PRECIPITATING CRISES

INFECTIONS (especially Malaria) **PYREXIA** EXPOSURE TO COLD DEHYDRATION **PREGNANCY**

CRISES IN SICKLE CELL DISEASE

HYPERHAEMOLYTIC

AREGENERATIVE OR APLASTIC

SMALL VESSEL OCCLUSION

CLINICAL MANIFESTATIONS OF SICKLE CELL DISEASE

HAEMOLYTIC ANAEMIA TISSUE INFARCTION

Clinical Manifestations in Sickle Anaemia

- Pallor (Anaemia)
- Jaundice & Dark Urine
- Apathy & Anorexia
- Hand-Foot Syndrome (Young Children)
- Splenic sequestration (Young Children)Hepatic Sequestration
- Bones, Joints Pain
- Abdominal Pain

Clinical Manifestations in Sickle Anaemia

- Recurrent Infections & Chest Symptoms (Acute Chest Syndrome)
- Hepato-Splenomegaly
 - (Early Childhood)
 - (Association with Thalassaemias)
- CNS Presentations
- Leg Ulceration
- Skeletal Deformity

Laboratory Diagnosis

CBC
Blood Film
Sickle Solubility Test
Hb Electrophoresis
Genetic Study

Indications for Blood Transfusion in Sickle Cell Anaemia

- * Splenic sequestration
- * Hepatic sequestration
- * Aplastic crisis
- * Overwhelming infections
- * Elective or emergency surgical operation
- * Severe painful crisis associated with severe haemolysis
- * Pregnancy

Indications for exchange transfusion

- * Strokes
- * Pulmonary infarcts with infection
- * Pregnancy (Severe persistent painful crisis)
- * Priapism
- * Preparation for major surgery

Practical Haemaglobinopathy

HAEMOGLOBIN VARIANTS: GENE DISTRIBUTION

EFFECTS OF HAEMOGLOBIN VARIANTS

Variant	Clinical and haematological abnormalities
HbS	Recurrent painful crises (in adults) and chronic haemolytic anaemia; both related to sickling of red cells on deoxygenation*
НЬС	Chronic haemolytic anaemia due to reduced red cell deformability on deoxygenation, * deoxygenated HbC is less soluble than deoxygenated HbA.
Hb Köln, Hb Hammersmith	Spontaneous or drug-induced haemolytic anaemia due to instability of the Hb and consequent intracellular precipitation.
HbM Boston, HbM Saskatoon	Cyanosis due to congenital methaemoglobinaemia as a consequence of a substitution near or in the haem pocket.
Hb Chesapeake	Hereditary polycythaemia due to increased \mathbf{O}_2 affinity.
Hb Constant Spring, Hb Lepore, HbE	Thalassaemia-like syndrome due to decreased rate of synthesis of normal chains.
Hb Indianapolis	Thalassaemia-like syndrome due to marked instability of Hb

* Only in homozygotes

Abnormal Haemoglobin Variants

Hb C:-

- * Is due to replacement of glutamic acid in position 6 of the beta chain by lysine ($\alpha_2\beta_2$ 6-GLU \rightarrow LYS).
- * About 7-22% of people of West Africa ar hetrozygotes especially Nigeria and North Ghana
- * Homozygotes are rare and have mild to moderate hemolytic anaemia with many thick target RBCs in the blood film and mild to moderate splenomegaly.
- * The chronic hemolytic anaemia is due to reduced red cell deformability on deoxygenation.
 - Deoxygenated HbC is less soluble than deoxygenated HbA.
- * Double heterozygotes with sickle Hb S/C give moderate to sever anaemia with symptoms of sickle cell disease.

Hb D Punjab

 $(\alpha_2\beta_2-121 \text{ GLU} \rightarrow \text{GLN})$

Prevalent in Indian and Pakistani in every 100 persons about 1 trait (1% of the population).

Trait are usually health.

Homozygous D/D have mild to moderate anaemia.

Combined double heterozygotes Hb S/D can give rise to moderate to a severe anaemia and symptoms of sickle cell disease.

Hb E:

- * $(\alpha_2\beta_2 \ 26 \ GLU \rightarrow LYS)$ is one of the most common beta-chain variants.
- * It is very prevalent in South East Asia (50%) of the population are heterozygotes.
- * Patients who are homozygous generally have mild haemolytic anaemia, microcytic hypochromic red cells and mild enlargement of the spleen.
- * Carriers are symptomless unless they have combined other mutations such as the one for alpha thalassemia, or beta-thalassemia trait.

Hb O Arab $(\alpha_2\beta_2-121 \text{ GLU} \rightarrow \text{LYS})$

Heterozygotes are not symptomatic.

Double heterozygous with sickle S/O are clinically severe.

Hb O- Arab enhance the polymerization of HbS.

High Oxygen affinity haemoglobins

Hb Chesapeake:

- * $(\alpha_2$ -92 ARG \rightarrow LEU β_2).
- * Carriers are without clinical symptoms.
- * Homozygous of erythrocytosis (polychemia) due to increased O₂ affinity.
- * The patients have no splenomegaly. (except for patient's with concomitant β -thalassemia).
- * They have normal WBC, and normal platelets.
- * High Hb, High RBCs count and high haematocrit. (HCT).

The haemoglobin oxygen (O_2) dissociation cruve. 2,3-DPG, 2,3-diphosphoglycerate.

Unstable Haemoglobins

Hb koln ($\alpha_2\beta_2$ -98 VAL \rightarrow MET) Hb Hammersmith ($\alpha_2\beta_2$ 42 PHE \rightarrow SER) Hb Hasharon (α_2 -47 ASP \rightarrow HIS β_2).

- These abnormal haemoglobin cause haemolysis in the newborn (congenital non-spherocytic haemolytic anaemia).
- Heinz body hemolytic anaemia with sensitivity to oxidant drugs, such as sulfonamides.
- Reticulocytosis out of proportion to the level of Hb.
- Increased formation of methemoglobin.
- Spontaneous or drug induced haemolytic anaemia due to instability of the haemoglobin and consequent intracellular precipitation.
- Thalassaemia like peripheral blood picture.

Clinically: The patient have anemia, jaundice, splenomegaly / hepatomegaly and gall stones.

Low oxygen affinity haemoglobins

More than 50 variants with reduced oxygen affinity have been identified.

Hb kansas ($\alpha_2\beta_2102$ ASN \rightarrow THR)

Hb Aukland ($\alpha_2\beta_2$ 25 GLY \rightarrow ASP)

Rare as homozygotes.

Patients have anaemia and congenital cynosis due to reduced oxygen affinity.

Congenital methaemoglobinaemia

Hb M Boston (α_2 58 HIS \rightarrow TYR - β_2)

Hb M Saskatoon (α_2 - β_2 -63 HIS \rightarrow TYR)

Hb M Hyde park ($\alpha_2\beta_2$ 92 HIS \rightarrow TYR)

Hb M IWATE (α_2 87 HIS \rightarrow TYR- β_2)

Cynosis in homozygotes due to congenital methaemoglobinaemia as a consequences of substitution of amonoacids near or in haem pocket.

Hb iIndianapolis

 $(\alpha_2-\beta_2112 \text{ CYS} - \text{ARG})$

Is a rare and slightly unstable beta-globin variant.

Carriers are clinically normal with only mild reticulocytosis.

Homozygons have haemolytic anaemia and renal failure in severe cases.

Thalassaemia-like syndrome due to marked instability of the Hb.

Hb Electrophoresis

Hospital No.: QC Hb AFSC CONTROL-

ID : Hb AFSC CONTROL-2

Hb Electrophoresis

Fractions	%	Ref. %	
Hb A	51.3	46.7 - 56.9	
Hb F	21.4	17.4 - 22.4	
Hb S	18.3	17.3 - 22.3	
Hb A2	2.3	2.1 - 3.3	
Hb C	6.7	4.6 - 7.0	

KKUH

Heamatology Unit

Hb Electrophoresis

Hb Electrophoresis

Fractions	%	Ref. %		
Hb A	96.7	96.8 - 97.8		
Hb F	0.5	=< 2.0	<	
Hb A2	2.8	1.5 - 3.5		

KKUH

Heamatology Unit

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hospital No.:

921107

Sample No 54

ID: 063761

Date: 09/05/2010

Fractions	%	Ref. %	
Hb F	98.5		
Hb A2	1.5		

Comment:

28/3/2010

CBC Hb 98 MCV 73 NRBC 34

Hb Electrophoresis

KKUH

Heamatology Unit Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hospital No.: 594729

Sample No

37

ID: 064199

Date: 27/06/2010

6.5

89.9 3.6

Hb F

Hb S

Hb A2

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hospital No.: 610043

Sample No 52

ID: 064229

Date: 29/06/2010

Fractions	%	Ref. %	
Hb F	28.1		
Hb S	70.8		
Hb A2	1.1		

KKUH

Heamatology Unit

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hb Electrophoresis

Hospital No.: QC Hb AFSC CONTROL-

ID : Hb AFSC CONTROL-2

Hb Electrophoresis

Fractions	%	Ref. %	
Hb A	51.3	46.7 - 56.9	
Hb F	21.4	17.4 - 22.4	
Hb S	18.3	17.3 - 22.3	
Hb A2	2.3	2.1 - 3.3	
Hb C	6.7	4.6 - 7.0	

KKUH

Heamatology Unit

Hb Electrophoresis

Hb Electrophoresis

Fractions	%	Ref. %		
Hb A	96.7	96.8 - 97.8		
Hb F	0.5	=< 2.0	<	
Hb A2	2.8	1.5 - 3.5		

KKUH

Heamatology Unit

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hospital No.: 233095 ID: 063478 Sample No 20 Date: 17/04/2010 Hb S Hb F Hb A2 180 220 240 280 300 100 120 140 160 200 260 Fractions % Ref. % Hb F 14.7 Hb S 80.5

4.8

Hb A2

KKUH

Heamatology Unit

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hospital No.: 913628 ID: 063511

Sample No 34 Date: 19/04/2010

Fractions	%	Ref. %
Hb A	8.7	
Hb F	4.9	
Hb S	80.1	
Hb A2	6.3	

Comment:

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hospital No.: 594729

Sample No

37

ID: 064199

Date: 27/06/2010

6.5

89.9 3.6

Hb F

Hb S

Hb A2

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hospital No.: 610043

Sample No 52

ID: 064229

Date: 29/06/2010

Fractions	%	Ref. %	
Hb F	28.1		
Hb S	70.8		
Hb A2	1.1		

KKUH

Heamatology Unit

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hospital No.:

921107

Sample No

54

ID: 063761

Date: 09/05/2010

Fractions	%	Ref. %		
Hb F	98.5			
Hb A2	1.5			

Comment:

Beta Thalassaemia Major

King Saud Chungs Band Chungs B

(4)

	9	5)-	0	5	
	IDI	ENT	IFI	CA	TIC	M
1.	IDI	7.	0	3	S .	X
18	1	0		3		

- 2170369
- 3684245. 4 Cont.

Helena Laboratories

Alpha Thalassaemia

Haemoglobin H Disease

King Saub Chineston 1957 200

(+)

 (4)

HAEMOGLOBIN C DISEASE

Thank you