

The Objectives

- Types and biosynthesis of thyroid hormones
- Thyroid hormone action
- Regulation of thyroid hormones
- Thyroid function tests
- Goitre
- Hypo and hyperthyroidism
 - Causes
 - Diagnosis
 - Treatment
- Thermogenesis

Types & Biosynthesis of Thyroid Hormones

- Synthesized in the thyroid gland by:
 - Iodination
 - Coupling of two tyrosine molecules
 - Attaching to thyroglobulin protein
- Thyroid gland mostly secretes T₄
- Peripheral tissues (liver, kidney, etc.) de-iodinate T₄ to T₃ (active form)
- ❖ T₃ is the more biologically active form
- ❖ T4 can be converted to rT3 (reverse T3) <u>inactive</u> form (rT3 will be disturbed in non-thyroidal disease).

- Thyroxin Binding globulin (TBG)-bound (70%)
- Albumin-bound (25%)
- Transthyretin (prealbumin)-bound (5%)
- The unbound (free) form of T₄ and T₃ are biologically active
- Plasma [T4]:100 nmol/L
- Plasma [T3]:2 nmol/L
- Thyroid hormones has tyrosine amino acid

Don't confuse between Thyroglobulin protein which is present in thyroid gland carrying T hormones and Thyroxin Binding globulin the transporter in the blood

Thyroid hormone action

- Essential for normal maturation and metabolism of all body tissues
- Affects the rate of protein, carbohydrate and lipid metabolism
- * Regulates hermogenesis
- Untreated congenital hypothyroidism -> permanent brain damage
- Hypothyroid children have:
 - delayed skeletal maturation → **short stature**
 - delayed puberty
- Hypothyroid patients have high serum cholesterol due to:
 - Down regulation of LDL receptors on liver cells
 - Failure of sterol excretion via the gut

Med432 Biochemistry Team

Regulation of Thyroid Hormone Secretion

- ❖ High thyroid hormone levels suppress TRH & TSH.
- Low thyroid hormone levels stimulate TRH & TSH to produce more hormone.
- ❖ The <u>hypothalamic-pituitary-thyroid axis</u> regulates thyroid secretion.
- The hypothalamus senses low levels of T₃/T₄ and releases thyrotropin releasing hormone (TRH).
- TRH stimulates the pituitary to produce thyroid stimulating hormone (TSH).
- TSH stimulates the thyroid to produce T₃/T₄ until levels return to normal.
- Controlling the release of both TRH and TSH.

Thyroid Function Tests (TFT)

Thyroid Function Tests (TFT)

TSH measurement:

- Indicates thyroid status
- Sensitive, first-line test

Total T_{λ} or free T_{λ} :

- Indicates thyroid status
- Monitors thyroid treatment (both anti-thyroid and thyroid supplement treatment)
- During the <u>early</u> treatment of hyperthyroidism, TSH may take up to 8 weeks to adjust to new level during treatment.(due to this, we cant use TSH measurement in monitoring treatment until it back to normal and)
- Some labs only measure TSH as first-line test

Total T_3 or free T_3 :

- Rise in T₃ is independent of T₄
- In some patients <u>only</u> T₃ rises (T₄ is normal): **T₃ toxicosis**
- For <u>earlier</u> identification of T₃ thyrotoxicosis

Antibodies:

- Diagnosis and monitoring of autoimmune thyroid disease (Hashimoto's thyroiditis); anti-thyroid peroxidase in hypothyroidism
- Diagnosis of Grave's disease: Antibodies against TSH receptors on thyroid cells.

Goitre

Enlarged thyroid gland

It is an anatomical definition rather than physiological

Functionally; Goitre may be associated with:

- Hypofunction
- Hyperfunction
- Normal concentration of thyroid hormones (euthyroid)

Causes:

- Iodine deficiency
- Selenium deficiency
- Autoimmune:
- Hashimoto's thyroiditis (hypothyroidism)
- Grave's disease (hyperthyroidism)
- Congenital hypothyroidism
- Thyroid cancer

	Hypothyroidism	Hyperthyroidism
	Primary hypothyroidism: Failure of thyroid gland (Elevated TSH) Secondary hypothyroidism: Failure of the pituitary to secrete TSH (rare) Failure of the hypothalamic-pituitary-thyroid axis (it affects adrenal ,FSH and LH also)	Primary Over-activity of the thyroid gland → ↑secretion of thyroid hormones Tissues are exposed to ↑ levels of thyroid hormones (thyrotoxicosis) Secondary to ↑ pituitary stimulation of the thyroid gland
Causes	 Hashimoto's disease (autoimmune destruction of the thyroid gland) Radioiodine or surgical treatment of hyperthyroidism (iatrogenic) Drug effects (e.g. lithium and tyrosin kinase inhibtors)) TSH deficiency Congenital defects Severe iodine deficiency 	 Grave's disease Toxic multinodular goitre Thyroid adenoma Thyroiditis (inflammation destruction) Intake of iodine / iodine drugs Excessive intake of T₄ and T₃ (iatrogenic) or (Factitious hyperthyroidism)
Clinical features	 Tiredness Cold intolerance Weight gain Dry skin 	 •Weight loss with normal appetite •Sweating / heat intolerance •Fatigue •Palpitation / agitation, tremor •Angina, heart failure •Diarrhea •Eyelid retraction and lid lag

Continued..

Diagnosis

- Elevated TSH level confirms hypothyroidism

 Suppressed TSH level •Raised thyroid hormones level

✓ primary hyperthyroidism

Problems in diagnosis

Total serum[T,] changes due to changes in binding protein levels In pregnancy, high estrogens \rightarrow increase TBG synthesis.

Total $[T_{\lambda}]$ will be high, free $[T_{\lambda}]$ will be normal. Congenital TBG deficiency can also influence results. Free T₄ and TSH are first line tests for thyroid dysfunction.

Antithyroid drugs: carbimazole, propylthiouracil

Radioiodine: sodium ¹³¹I inhibits T₁/T₃ synthesis

Treatment

- -T₄ replacement therapy (tablets) - Monitoring TSH level to determine dosage
- Patient has to continue treatment for life

Grave's Disease

Surgery: thyroidectomy

- Due to genetic defect in thyroid gland of newborns.

umbilical hernia, mental retardation, short stature, deaf mute, and

Neonatal hypothyroidism (dangerous)

- Diagnosed by TSH screening.
- Hormone replacement therapy.

neurological signs.

- May cause **cretinism**, if untreated.
- -Cretinism is manifested by puffy face, protuberant tongue,

- An autoimmune disease.
- Antibodies against TSH receptors on thyroid cells mimic the action of pituitary hormone.

-Most common cause of hyperthyroidism.

- Normal regulation of synthesis/control is disturbed

Hypothyroidism

Non-thyroidal illness

- •In some diseases, the normal regulation of TSH, T_3 and T_4 secretion and metabolism is disturbed.
- •Most of T₄ is converted to rT₃ (inactive)
- Causing thyroid hormone deficiency
- •TSH secretion is suppressed
- •Secretion of T_4 and T_3 is decreased

Dr. reem said this diagram is not important, just read it

Hyperthyroidism

Fig. 2 Strategy for the biochemical investigation of suspected hyperthyroidism.

Thermogenesis

Thermogenesis is the process of *heat production affected by thyroid hormone.*

- Thyroid hormone has an active role in thermogenesis
- Q About 30% thermogenesis depends on thyroid
- Thyroid regulates metabolism and ATP turnover
- **Q** It increases ATP synthesis and consumption by many possible mechanisms
- Na+/K+ gradient requires ATP to maintain it
- The gradient is used to transport nutrients inside the cell
- Thyroid reduces Na⁺/K⁺ gradient across the cell membrane by increasing metabolism (more nutrient transport in the cell)
- This increases the demand for ATP to maintain the gradient
- ATP synthesis and consumption is increased that produce heat
 - UCP1 is the best known and best characterized of the UCPs, is present in the <u>inner mitochondrial membrane</u> of brown adipose tissue.
 - Other UCP are found in the inner mitochondrial membrane of organs and tissues other than the brown adipose tissue (Ubiquitous distribution)

From Male Slides

- Thyroid hormones cause increased proton leak into the matrix across the inner mitochondrial membrane.
- Protons are pumped back into the matrix by uncoupling proteins (UCPs) without ATP synthesis.
- This process produces heat.
- The mitochondria of brown adipose tissue contain UCP-1 (thermogenin).
- Produces heat via uncoupling of electron transport chain and oxidative phosphorylation.

UCP

T₃ helps in release of heat through hypothalamic-pituitary-thyroid axis by controlling UCP

Mechanism of action of uncoupling proteins (UCP):

2-The energy accumulated in this gradient is used by the ATP Synthase to produce ATP

3-UCPs reduce the proton gradient, bypassing the ATP synthase → exothermic movement of protons down the gradient → heat

1-The energy released in the oxidation of substrates in the mitochondria→proton gradient

summary

- •Types of thyroid hormones: Thyroxine (T₄), Tri-iodothyronine (T₃) & Reverse T₃ (rR₃)
- •T3 is the more biologically active form
- •Most of T₄ is transported in plasma bound to Thyroxin Binding globulin.
- •Thyroid Hormone essential for normal maturation and metabolism of all body tissues
- •Regulation of Thyroid Hormone Secretion by thyrotropin releasing hormone (TRH) and Thyroid stimulating hormone (TSH)

Thyroid Function Tests (TFT):

- TSH measurement:
 Indicates thyroid status and first-line test
- Total T₄ or free T₄:
 Indicates thyroid status and Monitors thyroid treatment
- Total T₃ or free T₃:
 T₃ toxicosis and For <u>earlier</u> identification of thyrotoxicosis
- Antibodies:
 Diagnosis and monitoring of autoimmune thyroid disease (Hashimoto's thyroiditis)
 Diagnosis of Grave's disease.

- •<u>Hypothyroidism</u> Diagnosis **Elevated TSH** level confirms hypothyroidism
- •Hyperthyroidism Diagnosis Suppressed TSH level, Raised thyroid hormone level, Confirms primary hyperthyroidism
- •<u>Thermogenesis:</u> About 30% thermogenesis depends on thyroid gland,.

Test your knowledge ..!

1-Which one of the following form has the most active biological action:

- A. T₃
- B. T2
- C. rT₃

2. Hypothyroid children have:

- A. Gigantism
- B. delayed puberty
- C. Wight loss

3. Administration of TSH increases serum T₃ and T₄ in:

- A. Hyperthyroidism of pituitary origin (secondary)
- B. Hypothyroidism of pituitary origin (secondary)
- C. Hyperthyroidism of thyroid origin (primary)
- D. Hypothyroidism of thyroid origin (primary)

3-B

7-B

W-T

Test your knowledge ..!

- 4. Which one of the following will be seen in case of primary hyperthyroidism?
- A. T₄ is low
- B. T₃ is low
- C. TSH is low
- D. All are wrong
- 5. Which one of the following will happen in case of neonatal hypothyroidism?
- A. Acromegaly
- B. Dwarfism
- C. Cretinism
- D. Gigantism
- 6. High level of T₃ and T₄ and low TSH in serum indicates:
- A. Hyperthyroidism of pituitary origin (secondary)
- B. Hypothyroidism of pituitary origin(secondary)
- C. Hypothyroidism of thyroid origin (primary)
- D. Hyperthyroidism of thyroid origin (primary)

Q-9

D-2

) -†

If you find any mistake, please contact us =)

Biochemistryteam@gmail.com

Biochemistry team leaders:
Basil AlSuwaine And Manar AlEid

