

The Objectives

- Vitamin D functions and metabolism
- Vitamin D and calcium homeostasis
- Regulation of vitamin D synthesis
- Biochemistry, types and diagnosis of:
 - Osteomalacia and rickets
 - Osteoporosis

Vitamin D

- Vitamin D is considered a steroid hormone
- Cholecalciferol (vitamin D3) is synthesized in the skin by sunlight (UV)
- The biologically active form is:
- 1,25-dihydroxycholecalciferol (calcitriol)
- Ergocalciferol (vitamin D2) is derived from ergosterol in lower animals and plants
- D3, D2 are also available as supplement

Vitamin D functions

- Regulates calcium and phosphorus levels in the body (calcium homeostasis)
- Promotes absorption of calcium and phosphorus from the intestine
- Increases bone mineralization
- Increases reabsorption of calcium and phosphorus by renal tubules
- Maintains healthy bones and teeth

Vitamin D metabolism

1

1-Cholecalciferol(D₃) is derived from 7-dehydrocholesterol in the skin by sunlight

2

2-In liver:

Cholecalciferol is converted to 25hydroxycholecalciferol by the enzyme 25-hydroxylase

3

3-In kidneys:

The 1-a-hydroxylase enzyme converts 25-hydroxycholecalciferol to 1,25-dihydroxycholecalciferol (biologically active)

Active vitamin D is transported in blood by

gc-globulin protein

Vitamin D regulation and calcium homeostasis

- Vitamin D has essential role in calcium homeostasis
- Calcium homeostasis is maintained by parathyroid hormone (PTH) and calcitonin
- Vitamin D synthesis is strictly controlled in the kidneys by PTH
- Hydroxylation of 25-hydroxycholecalciferol is PTH-dependent in kidneys
- Calcium absorption in the gut:
 - •Indirectly depends on PTH
 - •Directly depends on vitamin D

Med432 Biochemistry Team

- Osteomalacia: defective bone mineralization in adults
- (softening of the bone in adult) (demineralization)
- Rickets: defective bone and cartilage mineralization in children
- -(softening of the bone in children) (defect in mineralization)

- Not common these days → because food (milk, oil) are now supplemented with vitamin D
- Serum level of 25-hydroxycholecalciferol is low
- In sever cases :
 - serum Calcium (hypocalcaemia)
 - PTH secretion (because of low Ca⁺²)
 - Alkaline phosphatase (alkaline phosphate isoenzyme is
 - a marker for turnover (increase in "children" and "Osteomalacia and Rickets")

<u>Vitamin-D-dependent rickets type 1 and 2:</u>

- -it is a Rare disease due to genetic disorders
- 1) defects in Vitamin D synthesis
- 2) defects in Vitamin D receptor (no hormone action)

Clinical features	Rickets	Osteomalacia
Soft bone	✓	✓
Skeletal deformity (bowed legs)	✓	
Bone pain	✓	✓
Increase tendency of bone fracture	✓	✓
Dental problem	✓	
Muscle weakness	✓	✓
Growth disturbance	✓	
Compressed vertebrae		✓

Measuring serum level of :

Diagnosis • 25-hydroxycholecalciferol

- PTH
- Ca⁺²
- Phosphate
- Alkaline phosphate

Helpful video for Osteomalacia and Rickets Disease:

http://education-portal.com/academy/ lesson/osteomalacia-and-rickets-causesand-symptoms.html

- Reduction in bone mass per unit volume
- Bone matrix composition is normal but it is reduced (bone mineral density is normal in composition but reduced in the amount)
- Post-menopausal women lose more bone mass than men (primary osteoporosis)
- The cause is unknown

Osteoporosis

Types

Primary osteoprosis (we're diagnosing the cause not osteoporosis itself)

* Osteogenesis imperfecta

** Idiopathic juvenile osteoprosis

Postmenopausal women > men

Drugs

Immobilization

Smoking

Alcohol

Cushing's syndrome

Gonadal failure

Hyperthyroid is m

GI disease causes → can be diagnosed by biochemical test

Due to other

^{*} Osteogenesis imperfecta is a rare form of osteoporosis that is present at birth

^{**} diopathic juvenile osteoporosis is rare. It occurs in children between the ages of 8 and 14 or during times of rapid growth.

Med432 Biochemistry Team

Osteoporosis

Diagnosis

Common biochemica

- Serial measurement of bone density
- No specific biochemical tests to diagnose or monitor primary osteoporosis (no biochemical markers)
- The test results overlap in healthy subjects and patients with osteoporosis

Prevention

- Prevention from childhood is important
- Good diet and exercise
- Hormone replacement therapy in menopause (estrogen)

- Hydroxyproline (bone resorption)
- Alkaline phosphate (bone turnover)
- Osteocalcin (bone formation) "osteoblast make osteocalcin"

Treatmen

- In confirmed case of osteoporosis → treatment options are unsatisfactory
- Oral Ca⁺², Estrogen, fluoride therapy may be beneficial

summary

- Osteomalacia: defective bone mineralization in adults
- <u>Rickets:</u> defective bone and cartilage mineralization in children
 - Causes:
 - * Vitamin D deficiency * Impaired Vitamin D metabolism
 - * Calcium deficiency * Imbalance in calcium homeostasis
- <u>Diagnosis</u> by measuring serum level of :
 - *25-hydroxycholecalciferol *PTH
 - *Calcium * Phosphate * Alkaline phosphatase
- Osteoporosis:
 - 1/ primary (genetic defect)
 - 2/secondary : Drugs ,alcohol , smoking , GI disease ... etc
- Treatment
 - In confirmed cases of osteoporosis → treatment options are unsatisfactory

- •Under normal condition vitamin D increases the activity of osteoblast to promote bone formation and increase the activity of alkaline phosphatase to increase local bone concentration of phosphorus, but when hypocalcium occurs vitamin D will promote bone resorption to increase blood *Ca2+* to normal levels.
- •25-hydroxycholecalciferol is the major storage form and the one measured in the blood.
- •1-a-hydroxylase is regulated:
 - VPO₄3⁻ directly activates it
- **V**Ca2+ indirectly activates it through release of parathyroid hormones

Special thanks to Latifah Al-Fahad

Test your knowledge ..!

A-12-months old female, presented to the clinic with bowed legs, Dental problems and growth disturbance, what is the most likely diagnose:

- 1) Osteomalacia
- 2) Rickets
- 3) Osteoporosis
- 4) Hypothyroidism

B-Primary Osteoporosis may be caused by:

- 1) Smoking
- 2) Drugs
- 3) Immobilization
- 4) Post-menopausal

C- calcium homeostasis is maintained by:

- 1) PTH and calcitonin
- 2) Cholesterol and calcium
- 3) Vitamin D and vitamin C
- 4) Vitamin C and PTH

D- The precursor of bile salts, vitamin D and sex hormones:

- 1)Tyrosine
- 2)Cholesterol
- 3)Glucose
- 4)Glutamate

E-The most potent Vitamin D metabolite is :

- 1) 25-Hydroxycholecalciferol
- 2) 1,25-Dihydroxycholecalciferol
- 3) 24, 25-Dihydroxycholecalciferol
- 4) 7-Dehydrocholesterol

F- 25-Hydroxylation of vitamin D occurs in :

- 1) Skin
- 2) Liver
- 3) Kidneys
- 4) Intestinal mucosa

If you find any mistake, please contact us =)

<u>Biochemistryteam@gmail.com</u>

Biochemistry team leaders: Basil AlSuwaine And Manar AlEid

