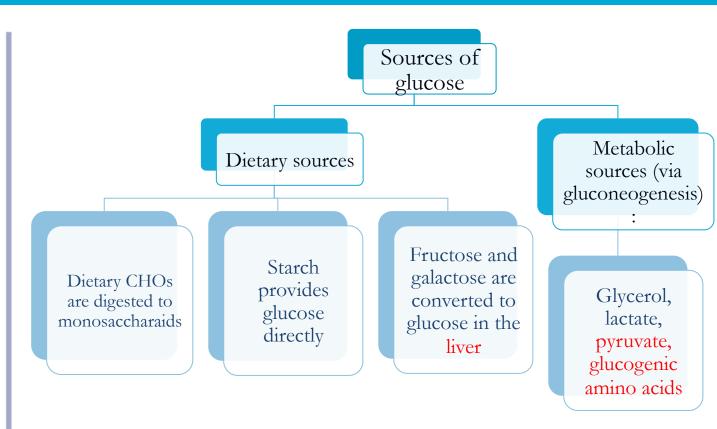
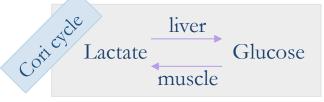

[lecture 5] Glucose Homeostasis Endocrine system Biochemistry

The Objectives

- Introduction
- Sources of glucose
- Phases of glucose homeostasis
- Hormones in glucose homeostasis (actions, role in CHO metabolism)
 - Insulin
 - Glucagon
 - Somatostatin
 - Cortisol
 - Growth hormone
 - Epinephrine



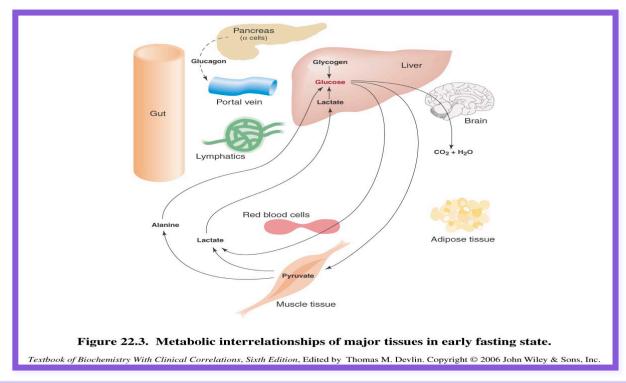
Glucose Homeostasis


- ♦ It is a process that:
 - Controls glucose metabolism and
 - Maintains normal blood glucose level in the body
- ♦ Glucose is a major source of body's energy
- ♦ The liver plays a key role in maintaining blood glucose level
- ♦ It is tightly controlled as the brain constantly needs glucose
- ♦ Severe hypoglycemia can cause coma and death
- Chronic hyperglycemia results in glycation of proteins, endothelial dysfunction and diabetes mellitus

(Glycation of proteins: is the bonding between protein and glucose (in case of hyperglycemia) without the help of an enzyme (e.g hemoglobin A1c)

Phase I (Well-fed state): (5-6 hours after a meal)

- Glucose is mainly supplied by dietary CHOs
- Liver removes about 70% of glucose load after a CHO meal
- All body tissues use dietary glucose for energy in this phase
- Some glucose is converted to glycogen for storage in the liver (glycogenesis)
- Excess glucose is converted to fatty acids & Glycogen and triglycerides in the liver
- These are transported via VLDL (very low density lipoproteins) to adipose tissue for storage
- Gluconeogenesis is inhibited in this phase
 - Cori and glucose-alanine cycles are inhibited

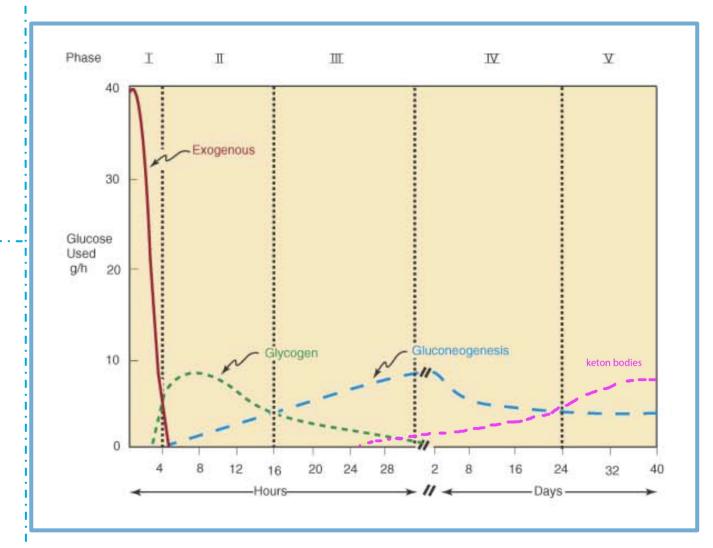


Phase II (Glycogenolysis):

- Phase II starts during early fasting when dietary glucose supply is exhausted
- Hepatic glycogenolysis and gluconeogenesis maintain blood glucose level in this phase
- Major sources of blood glucose in this phase:
 - Glycogenolysis and gluconeogenesis

Phase III (Gluconeogenesis):

- Phase III starts when glycogen stores in liver are exhausted (< 20 hours)
- Duration of phase III (various) depends on
 - 1. Feeding status
 - 2. Hepatic glycogen stores
 - 3. Physical activity
- Hepatic gluconeogenesis from lactate, pyruvate, glycerol and alanine maintains blood glucose level
- Major source of blood glucose in this phase:
 - Gluconeogenesis



Phase IV (Glucose and KB oxidation):

- Several days of fasting leads to phase IV
- Gluconeogenesis starts to decrease
- FA oxidation increases KB accumulation
- KBs enter the brain and muscle for energy production
- Brain uses both glucose and KB for energy

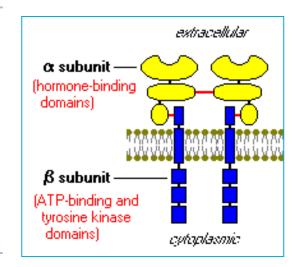
Phase V (FA and KB oxidation):

- Prolonged fasting(more than week) leads to phase V
- Less dependence on gluconeogenesis
- All body tissues mainly use FA and KB oxidation for energy production
- Gluconeogenesis somewhat maintains blood glucose level in this phase
- High KB conc. and glucose levels inhibit proteolysis in muscle (conservation of muscle).
- When all fat and KBs are used up
 - I. Body uses muscle protein to maintain blood glucose level (protein sparing effect)


Phase	Origin of Blood Glucose	Tissues Using Glucose	Major Fuel of Brain
	Exogenous	All	Glucose (transported by GLUT ₃)
Ш	 Glycogen Hepatic Gluconeogenesis 	All except liver. Muscle & adipose tissue at diminished rates	Glucose
	 Hepatic Gluconeogenesis Glycogen 	All except liver. Muscle & adipose tissue at rates intermediate between II &IV	Glucose
IV	Hepatic & Renal Gluconeogenesis	Brain, RBCs, Renal Medulla, muscles.	Glucose, ketone bodies
V	Hepatic & Renal Gluconeogenesis	Brain, RBCs, Renal Medulla.	Glucose, ketone bodies

2000

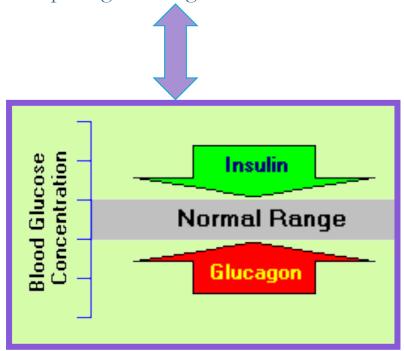
Hormones that regulate glucose metabolism:


• Insulin (lowers blood glucose level)

***Insulin**

- Plays a major role in glucose homeostasis
- Synthesized by the β-cells of islets of Langerhans of pancreas
- A small protein composed of two chains
- Rise in blood glucose level stimulates insulin secretion
- Promotes entry of glucose into cells

♦ Mechanism of its action


- The insulin receptor is present on the plasma membrane of cell
- Composed of
 - a-subunit (extracellular)
 - b-subunit (cytoplasmic)
- Binding of insulin to a-subunit causes phosphorylation of bsubunit
- This activates the receptor
- The activated receptor then phosphorylates intracellular proteins generating a biological response

♦ Insulin and CHO metabolism:

- > Promotes glucose uptake into cell:
 - Glucose is diffused into cells through hexose transporters such as GLUT4
 - GLUT4 is present in cytoplasmic vesicles
 - Insulin binding to its receptor causes vesicles to diffuse into plasma membrane
 - GLUT4 is inserted into the membrane
 - Allowing glucose transport into the cell
 - Brain and liver have non-insulin dependent glucose transporter
 - Stimulates glycogen synthesis
- Decreases blood glucose levels
- Increases glycolysis (glucose → Pyruvate)
- Stimulates protein synthesis
- Insulin deficiency causes diabetes mellitus
- Hyperinsulinemia is due to insulin resistance in:
 - Diabetes mellitus or
 - Metabolic syndrome

*Glucagon

- A peptide hormone secreted by α -cells of pancreatic islets
- Secreted in response to hypoglycemia
- Increases glucose levels
- Stimulates glycogenolysis
- Activates hepatic gluconeogenesis

♣ Somatostatin

- A peptide hormone secreted by δ -cells of pancreatic islets, stomach and intestine
- An inhibitory hormone
- Inhibits secretion of both insulin and glucagon
- Affects glucose homeostasis indirectly

& Growth hormone

- A protein hormone secreted by anterior pituitary gland
- Maintains blood glucose levels by:
 - 1. Inhibiting insulin action
 - 2. Stimulating gluconeogenesis in the liver

♣ Glucocorticoids (Cortisol)

- Cortisol is a steroid hormone secreted by adrenal gland
- Contributes to glucose homeostasis
- Maintains normal glucose levels in fasting
- Stimulates gluconeogenesis in the liver
- Mobilizes amino acids for gluconeogenesis
- Stimulates fat breakdown in adipose tissue

* Epinephrine

- A catecholamine hormone secreted by adrenal gland
- Stimulates lipolysis in adipose tissue when glucose blood levels fall
- Promotes glycogenolysis in skeletal muscle

Summary

- Glucose is a major source of body's energy.
- ♣ Sources of glucose is Dietary sources & Metabolic sources (via gluconeogenesis).
- ♣ In Phase I Glucose is mainly supplied by dietary CHOs (exogenous).
- ♣ In Phase II Major sources of blood glucose is Glycogenolysis and gluconeogenesis.
- ♣ Phase III starts when glycogen stores in liver are exhausted. & Major source of blood glucose in this phase Gluconeogenesis.
- ♣ In Phase IV Brain uses both glucose and KB for energy.
- ♣ In Phase V All body tissues mainly use FA and KB oxidation for energy production
- ♣ Insulin Promotes entry of glucose into cells.
- ♣ Brain and liver have non-insulin dependent glucose transporter
- ♣ Glucagon Stimulates glycogenolysis
- Somatostatin Inhibits secretion of both insulin and glucagon
- Cortisol, GH, Epinephrine, Glucagon, & somatostatin are Antagonize insulin action

Extra Slide!

- Glycogenesis FORMATION of GLYCOGEN from glucose. (Glyco glycogen genesis creation)
- Gluconeogenesis FORMATION of GLUCOSE from smaller molecules. (Gluco glucose; genesis creation)
- Glycogenolysis BREAKDOWN of GLYCOGEN to form glucose. (Glyco glycogen; lyse destroy)
- Glycolysis BREAKDOWN of GLUCOSE to form energy and smaller molecules. (Lyse destroy; it is confusing because it is Gly not Glu, but it's just something you need to memorize!)

Test your knowledge ..!

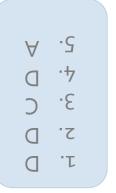
Q1: Glucose uptake by liver cells is:

- A. Energy-consuming
- B. A saturable process
- C. Insulin-dependent
- D. Insulin-independent

Q2: The conversion of alanine to glucose is termed:

- A. Glycolysis
- B. Oxidative decarboxylation
- C. Specific dynamic action
- D. Gluconeogenesis

Q3: Which of following abundant sources is used in phase III of glucose homeostasis:


- A. Glycogenolysis
- B. Fatty acid oxidation
- C. Gluconeogenesis
- D. Diet

Q4. Which of the following is an action of insulin:

- A. Simulate ketogenesis
- B. inhibit glucose up take in muscle
- C. stimulate glycogenolysis
- D. Lipogenesis

Q₅. Regarding the action of glucagon:

- A. It stimulates glycogenolysis
- B. It stimulates glycolysis
- C. It inhibits glycogenolysis
- D. It stimulates insulin activity

If you find any mistake, please contact us =)

<u>Biochemistryteam@gmail.com</u>

Biochemistry team leaders: Basil AlSuwaine And Manar AlEid

