[lecture 6] Cushing Syndrome

Endocrine system

The Objectives

- To identify different causes of Cushing's syndrome
- To understand the diagnostic algorithm for Cushing's syndrome
- To understand the interpretation of laboratory and radiological tests of Cushing's syndrome

Red = Blue = addition ant notes

Med432 Biochemistry Team /

Done By : Seham Al-Anazi & Hessah Alshehri

Reviewed by : Basil AlSuwaine

Med₄₃₂ Biochemistry Team

background

Med432 Biochemistry Team

The hypothalamus secretes corticotrophin-2 1 releasing hormone Hypothalam The adrenal cortex comprises three zones Anatomy -capsule The adrenal gland is situated on the based on cell type and (RH zona reticula (CRH) stimulates the anteriosuperior aspect of the kidney. anterior pituitary function: zona glomerulosa gland to release Zona glomerulosa: ACTH. Adrenal The outermost zone gland \rightarrow aldosterone (the Capsule principal Kidney Zona glomerulosa mineralocorticoid Pituita ACTH acts on the zona fasiculata cells ACTH Cortisol Ureter Zona fasciculata \rightarrow release of The deeper layers ADAM. glucocorticoids of the cortex: **Histology**: (Cortisol). Zona reticularis The adrenal gland consists of two Zona Iultinucleated mas distinct tissues of different **Adrenal** fasciculata: of protoplasm embryological origin, the outer \rightarrow qlucocorticoids Wedulla. cortex and inner medulla. - mainly Cortisol cortisol (95%) Adrenal Adrenal Medulla Cortex (center Zona reticularis (outer) \rightarrow Sex hormones

Negative feedback control:

•ACTH release from the

and **Cortisol** 0 Regulation of AC Se

anterior pituitary is stimulated by hypothalamic secretion of corticotrophin releasing hormone (CRH).

•CRH \rightarrow \uparrow ACTH \implies \uparrow [Cortisol]

•^[Cortisol] or synthetic steroid suppress CRH & ACTH secretion

2) Stress:

.....

(e.g. major surgery, emotional stress) Stress → ↑↑ CRH & ACTH → ↑↑ Cortisol

3) The diurnal rhythm of plasma cortisol:

Highest Cortisol level in the morning (8 - 9 AM)

Lowest Cortisol level in the late afternoon and evening (8 - 9 PM).

1- Serum [cortisol] and plasma [ACTH]:

•Serum measurement is preferred for cortisol and Plasma for ACTH.

•must be collected (without venous stasis * which affect the amount) between <u>8 a.m.</u> and <u>9 a.m.</u> and between <u>10 p.m. and 12 p.m</u>. because of the diurnal rhythm.

•Temporary $\uparrow\uparrow$ in these hormones may be observed as a response to emotional stress.

Plasma [CBG] : In the circulation, glucocorticoids are mainly protein-bound (about 90%), chiefly to cortisol-binding globulin (CBG or transcortin) -CBG↑↑ in pregnancy and with estrogen treatment (e.g. oral contraceptives). that lead the cortisol LEVEL to go up.

-CBG $\downarrow \downarrow$ in hypoproteinemic states (e.g. nephrotic syndrome).. that lead the cortisol LEVEL to go down. Whenever we do a test INTHE BLOOD we measure the TOTAL cortisol.

Cortisol and ACTH measurements

Urinary cortisol excretion:

•Cortisol is removed from plasma by the liver \rightarrow metabolically inactive compounds \rightarrow excreted in urine mainly as conjugated metabolites (e.g. glucuronides).

•A small amount of cortisol is excreted unchanged in the urine (UFC).

In normal individuals:

-Urinary free cortisol (UFC) is < 250 nmol/24 h. reflects how much free cortisol present in the blood while when you measure it in the BLOOD you measure the TOTAL..

-you are not sure that the 24 h is exactly 24 h so you have to do the Cortisol / Creatinine ratio:

in an early morning specimen of urine is < 25 µmol cortisol / mol creatinine.

Glucocorticoid functions

Glucocorticoids have widespread metabolic effects on carbohydrate, fat and protein metabolism.

•Upon binding to its target, <u>CORTISOL</u> enhances metabolism in several ways:

<u>- In the liver</u>, Cortisol is an insulin antagonist and has a weak mineralocorticoid action →

↑↑ Gluconeogenesis →
 production of glucose from
 newly-released amino acids
 and lipids
 ↑↑ Amino acid uptake and
 degradation
 ↑↑ Ketogenesis.

-In <u>the adipose tissue</u>: Cortisol $\rightarrow \uparrow\uparrow$ Lipolysis through breakdown of <u>fat</u>.

-Conserving glucose: by inhibiting uptake into <u>muscle</u> and <u>fat cells</u>.

⁻In <u>the muscles</u>: Cortisol $\rightarrow \uparrow\uparrow$ proteolysis and amino acid release.

Cushing's Syndrome

Investigations of suspected adrenocortical hyperfunction Medga Biochemistry Team

Investigation	Significance	Туреѕ	Interpretation
A. Screening tests (out-patient):	to assess the clinical diagnosis of adrenocortical hyperfunction.	Effective screening tests need to be <u>sensitive</u> but <u>do</u> not have to be highly specific. It includes: Low-dose dexamethasone suppression test: (Overnight suppression test) Dexamethasone → ↓ CRH → ↓ ACTH → ↓ cortisol 2. 24-hour urinary free cortisol 	Serve to: distinguish simple non-endocrine obesity from obesity due to Cushing's syndrome.
B. Confirmatory tests (in-patient):	to confirm or exclude the provisional diagnosis	Insulin-induced hypoglycemia	Required to rule out pseudo- Cushing's syndrome (Depressed or extremely, anxious patients, Severe intercurrent illness, Alcoholism).
C. Tests to determine the cause	to ascertain: a-The site of the pathological lesion (adrenal cortex, pituitary or elsewhere?) b-The nature of the pathological lesion.	 Plasma ACTH (Diurnal rhythm) High-dose dexamethasone suppression test CRH stimulation test Radiological tests: MRI of pituitary & ultrasound or CT of adrenals 	

	Screening Tests	Procedure	Results	Other
Screening Tests	Low-dose dexamethasone (DXM) suppression test: (outpatient procedure)	-One mg DXM administered at 11-12 PM the night before attending the clinic. -Serum cortisol is measured at 8-9 AM.	Cortisol < 50 nmol/L (suppression)→ exclude Cushing's disease	Precautions: Drugs that induce hepatic microsomal enzymes (Phenobarbitone & phenytoin) lead to→ ↑ DXM metabolism & ↓ DXM blood level to achieve CRH suppression (false diagnosis of Cushing)
A-	24-hour urinary free cortisol (UFC):		Cortisol < 250 nmol/day → exclude Cushing's disease.	Disadvantage: Incomplete collection of urine (e.g. collection of urine for only 22 hours) → a false-negative result An alternative to this test: The urinary cortisol : creatinine ratio on an early morning specimen

Cushing syndrome refers to the manifestations of excessive cortisol, while Cushing disease refers to hypercortisolism due to ACTH hypersecretion by a benign pituitary adenoma.

	Significance	Procedure	Results	Interpretation	Other
Insulin-induced hypoglycemia	 To test the integrity of the hypothalamic- pituitary-adrenal (HPA) axis. To distinguish true Cushing's syndrome from pseudo- Cushing's syndrome 	Procedure: Insulin I.V. (0.15 U/kg) to lower blood glucose to 2.2 mmol/L or less . Samples for simultaneous measurement of serum glucose & cortisol levels are taken basally (before insulin injection) & at 30, 45, 60 & 90 min after I.V. insulin injection. Failure to achieve a glucose level of 2.2 mmol/L invalidates the test & should be repeated with increment in step of 0.05 U/kg. Normally: Hypoglycemia $\rightarrow \uparrow$ CRH $\rightarrow \uparrow$ ACTH $\rightarrow \uparrow$ cortisol	Pseudo-Cushing patients show: abnormal diurnal rhythm of S. cortisol, but, with Insulin-induced hypoglycemia → ↑ CRH, ACTH and cortisol blood levels True Cushing patients: No response to hypoglycemia (due to disturbed HPA-axis).	<pre>Normally: Basal serum cortisol: at least 145 nmol/L At 60 - 90 minutes: the level > 425 nmol/L (Basal serum cortisol will increase & become more than 425 in normal & pseudo-cushing). Patients with Cushing's syndrome: Whatever the cause, do not respond normally to insulin- induced hypoglycemia. High basal serum cortisol than normal. At 60 - 90 minutes: no increase in serum cortisol, despite the production of an adequate degree of hypoglycemia.</pre>	Contraindicated in: epilepsy or heart disease.

B. Confirmatory Test

C. Tests used to determine the cause of Cushing's syndrome:

	Procedure	Results	Other
1- Plasma ACTH (Diurnal rhythm)	Plasma [ACTH] should be measured on blood specimens collected at 8-9 a.m. and 8-9 p.m.	 Plasma ACTH level could be one of the following: 1-Undetectable ACTH: indicates functional adrenal tumor → confirmed by an abdominal CT scan to detect an adrenal mass. 2-High ACTH: Cushing's disease (pituitary-dependent). 3-Very high ACTH: Ectopic (non-endocrine) origin of ACTH 	
2- High-dose dexamethasone suppression test	 2 mg dexamethasone every six hours for 48 hours to suppress cortisol secretion. Basal (pre-dexamethasone) serum cortisol or 24-hour urine free cortisol is compared with the results at the end of the 48-hour period. 	 Suppression is defined as a fall to less than 50 % of basal value. About 90 % of patients with Cushing's disease show suppression of cortisol output. In contrast, only 10% of patients with ectopic ACTH production (or with adrenal tumors) show suppression. (in other words: patients with ectopic ACTH production will show no response or no suppression). 	It is used to distinguish Cushing's disease from ectopic ACTH secretion.
3- CRH stimulation test	Measures the ACTH and cortisol levels basally and 60 minutes after injection of 100 µg CRH.	-Cushing's disease: ^^ ACTH & cortisol above basal at 60 min. 10% of patients fail to respond. -Ectopic ACTH & adrenal tumors: No response False-positive responses are unusual	In Cushing's disease: High-dose dexamethasone suppression test + the CRH test → 100 % specificity & sensitivity.
4-Radiological tests: MRI of pituitary & ultrasound or CT of adrenals	Ultrasound or CT scanning of the adrenal glands MRI of the pituitary gland		

Other blood tests commonly performed for patients suspected to have Cushing's syndrome are:

- -Full blood count -Blood glucose -Blood electrolytes & pH -Renal function tests
- -Liver function tests

Summary of Biochemical Tests for Adrenal Hyperfunction

Test	Cushing's disease	Adrenal tumor	Ectopic ACTH secreting tumor
Serum cortisol	1	1	↑
Dexamethasone Low dose test	Not suppressed	Not suppressed	Not suppressed
Urinary cortisol	↑	↑	\uparrow
Diurnal rhythm	Lost	Lost	Lost
Insulin-induced hypoglycemia	No response	No response	No response
Plasma [ACTH]	Normal or ↑	Not detectable	$\uparrow \uparrow \uparrow$
Dexamethasone High dose test	suppressed	Not suppressed	Not suppressed
CRH test	↑	No response	No response

- Highest Cortisol level is in the morning (8 9 AM) & the lowest Cortisol level is in the late afternoon & evening (8 9 PM).
- Serum measurement is preferred for cortisol and Plasma for ACTH.
- Glucocorticoids have widespread metabolic effects on carbohydrate, fat & protein metabolism.
- Disorders of the adrenals are uncommon.
- Sensitive screening tests (low-dose dexamethasone suppression test & 24-hour urinary free cortisol) for adrenocortical functions are important.
- Additional confirmatory tests (insulin-induced hypoglycemia) are required to establish the diagnosis and rule out pseudo-Cushing.
- Other biochemical tests (Full blood count, Blood glucose, Blood electrolytes & pH, Renal function tests, Liver function tests) and radiological investigation (Pituitary MRI & Adrenal US or CT) are required to determine the cause of Cushing's syndrome.

Test your knowledge ..!

1: There will be an increase in cortisol binding globulins in which of the following:

- A- Exercise.
- B- Pregnancy.
- C-Obesity.
- D-Alcoholism.

2: Which of the following causes of Cushing syndrome is ACTH-independent:

- A-Adrenal tumor.
- B- Pituitary adenoma.
- C- Small cell carcinoma of the lung.
- D- ACTH therapy.

3: Which of the following is a confirmatory test for Cushing syndrome?

- A- Urinary cortisol: creatinine ratio.
- B- 24-hour urinary free cortisol.
- C- Low-dose dexamethasone.
- D- Insulin-induced hypoglycemia.

4: Which of the following tests give 100% sensitivity & specificity for the diagnosis of Cushing disease?

- A- CRH+ low-dose DXM.
- B- Plasma ACTH + CRH.
- C- High-dose DXM + CRH.
- D- UFC + Plasma ACTH.

Test your knowledge ..!

5: 58 years old man was admitted with weight loss and respiratory distress. He had increased pigmentation and BP was 140/80.

Lab tests		
Urea	8.6	(2.5-7 mmol/L)
Sodium	144	(135-145 mmol/L)
Potassium	2.0	(3.5-4.5 mmol/L)
Cortisol	1650	(150-550 nmol/L)
Post overnight DMX	1530	(<50nmol/L)

Further investigation revealed the following

	Basal	After 48 h	After 48 h	comment
DXM suppression test		o.5 mg qid	2.0 mg qid	(qid means 4 times a day)
Serum cortisol	1350	1420	1100	(No suppression)

Plasma ACTH (ng/L): at 8 am : 220, at 22.00 pm: 180 (Ref. range: 7-51).

CRH showed flat response for cortisol & ACTH, in this patient Cushing syndrome is caused by?

A-Adrenal tumor.

B- Ectopic ACTH secreting tumor.

C-Cushing's disease.

6: A 54-year-old woman presents to the physician with diabetes mellitus, osteoporosis, & hypertension. She has noted a recent weight gain & abdominal striae. Laboratory studies show a decreased ACTH level. A single mass is noted adjacent to the right kidney on abdominal CT scan. Neither low- nor high-dose dexamethasone suppresses the patient's cortisol production. Which of the following is the most likely explanation for these findings?

- A-Adrenal adenoma
- B- Bilateral adrenal hyperplasia
- C- Ectopic ACTH secretion
- D- Exogenous corticosteroid administration
- E- Pituitary adenoma

5-B

<u>Biochemistryteam@gmail.com</u>

Biochemistry team leaders: Basil AlSuwaine & Manar AlEid

If you find any mistake, please contact us =)

