

This lecture was done by:

Ibrahim Alqasir Hossam alshehri

And reviewed by:

Najoud Alotaibi, Shatha al-shangeti

ORAL HYPOGLYCEMICS

Learning Objectives:

- Classify different categories of oral hypoglycemic drugs.
- Identify mechanism of action, pharmacokinetics and pharmacodynamics of each class oral hypoglycemic drugs.
- Identify the clinical uses of hypoglycemic drugs
- Know the side effects, contraindications of each class of oral hypoglycemic drugs

Oral hypoglycemic drugs

Glucose

Glucose

Insulin

Exocytosi

sulfonylureas

Mechanism: Stimulate insulin release from functioning B cells by <u>blocking of ATP-sensitive K</u> channels resulting in depolarization and <u>calcium influx(Hence, not effective in totally insulin-</u>

deficient pts" type-1).

- -Potentiation of insulin action on target tissues.
- -Reduction of serum glucagon concentration.

Kinetics of sulfonylureas:

Orally, well absorbed.

Reach peak concentration after 2-4 hr.

All are highly bound to plasma proteins.

Duration of action is variable.

Second generation has longer duration than first generation.

Metabolized in liver excreted in urine

Cross placenta, stimulate fetal B cells to release insulin \rightarrow hypoglycemia at birth.

Uses	of	sul	fon	ylureas		
Type II diabetes:						

monotherapy or in combination with other antidiabetic drugs

<u>Unwanted effects:</u>

Hyperinsulinemia & Hypoglycemia

Weight gain due to increase in appetite

Allergic reactions of sulfa drugs

Contraindications:

Hepatic impairment

renal insufficiency

Pregnancy & lactation

First generation sulfonylurea

	Tolbutamid short-acting	Acetohexamide intermediate-acting	Tolazamide intermediate -acting	Chlorpropam ide long- acting	
Absorption	Well	Well Slow		Well	
Metabolism	Yes	Yes	Yes	Yes	
Metabolites	Inactive**	Active***	Active***	Inactive***	
Half-life	4 - 5 hrs	6 – 8 hrs	7 hrs	24 – 40 hrs	
Duration of action	Short (6 – 8 hrs)	Intermediate (12 – 20 hrs)	(40 40 1)		
Excretion	Urine	Urine	Urine	Urine	

^{**}safe for old diabetic patients or pts with renal impairment.

^{***}Pts with renal impairement can expect long t_{1/2}

SECOND GENERATION SULPHONYLUREA

	Glipizide	Glibenclamide (Glyburide)	Glimepiride	
Absorption	Well	Well	Well	
Metabolism	Yes	Yes	Yes	
Metabolites	Inactive	Moderate activity	Moderate activity	
Half-life	2 – 4 hrs	Less than 3 hrs	5 - 9 hrs	
Duration of action	short	long	long	
	(10 – 16 hrs)	(12 – 24 hrs)	(12 – 24 hrs)	
Excretion	Urine	Urine	Urine	

Meglitinide analogues

e.g. Repaglinide

Rapidly acting insulin secretagogues

Mechanism of Action: Insulin secretagogue as sulfonylureas (same MOA)

Kinetics of Meglitinides:

Orally, well absorbed.

Very fast onset of action, peak 1 h.

short duration of action (4 h).

Metabolized in the liver & excreted in bile.

Uses of Meglitinides

- -Type II diabetes (monotherapy or combined with other antidiabetics).
- -Patients allergic to sulfonylurea.

Adverse effects of Meglitinides

- -Hypoglycemia
- -Weight gain.

Insulin sensitizers

Biguanides, e.g. Metformin

Mechanism of action of metformin

Does not stimulate insulin release.

Increases liver, muscle & adipose tissues sensitivity to insulin & increase peripheral glucose utilization.

Inhibits gluconeogenesis. Impairs glucose absorption from GIT.

Kinetics of <u>metformin</u>: **orally.**

Not bound to serum protein.

Not metabolized.

 $t \frac{1}{2}$ 3 hours.

Excreted unchanged in urine.

Uses of metformin

-Obese patients with type II diabetes Monotherapy or in combination.

Advantages:

No risk of hyperinsulinemia or hypoglycemia or weight gain (anorexia).

Adverse effects of metformin

Metallic taste in the mouth

Lactic acidosis(rare 1:30,000)

Long term use interferes with vitamin B₁₂ absorption.

GIT disturbances: nausea, vomiting, diarrhea

Contraindications of metformin

Renal impairement.

Liver impairement.

Lung disease

Alcoholism.

Heart failure

Insulin sensitizers

Thiazolidinediones E.g Pioglitazone

Mechanism of action

Increase sensitivity of target tissues to insulin.

Increase glucose uptake and utilization in muscle and adipose tissue.

Kinetics of Pioglitazone:

Orally (once daily dose).

Highly bound to plasma albumins (99%)

Slow onset of activity

Half life 3-4 h

Metabolized in the liver

Excreted in urine 64% & bile

Uses of Pioglitazone

- -Type II diabetes with insulin resistance.
- -Used either alone or combined with sulfonylurea, biguanides or insulin.
- -No risk of hypoglycemia when used alone

Adverse effects of Pioglitazone

Hepatotoxicity ?? (liver function tests for 1st year of therapy).

Fluid retention (Edema).

Precipitate congestive heart failure

Mild weight gain.

Acarbose, Meglitol

Mechanism: Reversible inhibitors of intestinal α -glucosidases in intestinal brush border responsible for degradation of oligosaccharides to monosaccharides

(competitively inhibit carbohydrates digestion)

Kinetics of Acarbose:

Given orally, poorly absorbed. Metabolized by intestinal bacteria. Excreted in stool and urine.

Side effects:

1-GIT: Flatulence, diarrhea, abdominal pain.

2- No hypoglycemia if used alone.

Actions:

1-decrease carbohydrate digestion and absorption in small intestine.

2-Decrease postprandial hyperglycemia.

3-Taken just before meals.

others: Incretin mimetics

Exenatide(GLP-1)

Kinetics:

- 1- is glucagon-like peptide-1 (GLP-1) agonist.
- 2- given s.c. once or twice daily.

Mechanism Of Action:

Stimulation of GLP-1 secretion from intestine which in turn stimulate insulin secretion from β cells.

Indications:

Therapy of patients with type 2 diabetes. who are not controlled with oral medicine

Side Effects:

Nausea & vomiting

Others: Dipeptidyl peptidase-4 (DPP-4) inhibitors

Sitagliptin, Vildaglibtin

Kinetics:

Orally
Given once daily
half life 8-14 h

Dose is reduced in pts with renal impairment

Mechanism Of Action:

Inhibit DPP-4 enzyme and leads to an increase in incretin hormones level. (leads to more insulin and less glucagon)

Indications:

1-Type 2 DM as an adjunct to diet & exercise
2- as a monotherapy or in combination with other antidiabetic drugs.

Side Effects:

1-Nausea, abdominal pain, diarrhea

2- Nasopharyngitis

Summary

	Drugs	MOA	Kinetics	uses	Advers Effects	Contraindic.
	Sulfonylurea	Stimulate insulin	-Orally, well absorbed.	1 st gen.	Hyperinsuline	Hepatic
		release from	-Reach peak conc. after 2-4	Tolbutamide	mia &	impairment
	There are further	functioning B cells by	hr.	(short)	Hypoglycemia:	Or
	classifications	blocking ATP-	- bound to plasma proteins.	safe for old	Less in	renal
	(1 st ,2 nd).	sensitive K ⁺ channels	-Duration of action is variable.	diabetic patients	tolbutamide.	insufficiency
		which causes	-Second generation has longer	or patients with	More in old	
		depolarization and	duration than first generation.	renal	age, hepatic or	Pregnancy &
	Site of action :	opening of voltage-	-Metabolized in liver	impairment.	renal diseases.	lactation
	Pancreatic B cells	dependent Ca 2+	-excreted in urine (elderly and		Weight gain	
S		channels, which	renal disease)	2 nd gen.	due	
gue		causes an increase in	-Cross placenta, stimulate	Glipizide (short)	GIT upset.	
gge		intracellular calcium	fetal β-cells to release insulin	- glyburide	Allergic	
reta		in the beta cells and	→fetal hypoglycemia	(Glibenclamide)	reactions in pts	
sec		stimulates insulin		(long)	sensitive to	
<u>:</u>		release.		Better then 1st	sulfa drugs	
nsulin secretagogues				gen.		
=	Meglitinides	Stimulate insulin	-Orally, well absorbed.	-Type II diabetes	Hypoglycemia.	
	e.g. Repaglinide	release from	-Very fast onset of action,	- patients		
		functioning $\boldsymbol{\beta}$ cells via	peak 1 h.	allergic to sulfa	Weight gain.	
	rapidly acting	blocking ATP-	-short duration of action (4 h).	drugs e.g.		
	insulin	sensitive K-channels	-Metabolized in liver	sulfonylureas.		
	secretagogue	resulting in calcium	-excreted in bile.	- used as		
	Site of action :	influx and insulin	-Taken just before each meal	monotherapy or		
	Pancreatic B cells	exocytosis.	(3 times/day).	combined with		
		Same as		metformin		
		Sulfonylurea!				

Summary

	Drugs	MOA	Kinetics	uses	Advers Effects	Contraindic.
	•	-Reversible inhibitors	-Given orally, poorly	-Decrease	GIT: Flatulence,	
	inhibitors	of intestinal α -	absorbed.	postprandial	diarrhea,	
		glucosidases in	-Metabolized by	hyperglycemia.	abdominal pain	
	Acarbose	intestinal brush	intestinal bacteria.	-earliest stages of		
		border that are	-Excreted in stool and	impaired glucose		
	Site of action :	responsible for	urine.	tolerance		
	GIT	carbohydrate		- <u>combined</u> with		
		digestion.	Decrease postprandial	sulfonylurea in the		
		-Decrease	hyperglycemia.	treatment of Type 2		
		carbohydrate	Taken just before meals.	diabetes to improve		
(۵		digestion and glucose	No hypoglycemia if used	blood glucose		
Others		absorption in small	alone.	control.		
ğ		intestine.				
	Dipeptidyl	-itagliptin inhibits	-Orally	Type II diabetes	GIT: Nausea,	
	peptidase-4	DPP-4 enzyme, which	-Given once daily	mellitus as a	abdominal pain,	
	(DPP-4) inhibitors	metabolizes the	-half life 8-14 h	monotherapy or in	diarrhea.	
		naturally occurring	-Dose is reduced in pts	combination with		
	e.g. Sitagliptin	incretin hormones	with renal impairment	other oral		
		thus increase incretin	-decreases blood glucose	antidiabetic drugs		
	Site of action :	secretion	level by :	when diet and		
	GIT	(gastrointestinal	Increasing insulin	exercise are not		
		hormones secreted in	secretion	enough.		
		response to food).	Decreasing glucagon			
		- Incretin hormones	secretion.			

- A) Exenatide
- B) Sitagliptin
- C) Acarbose
- D) Miglitol

Q2: Nasopharyngitis is a SE of:

- A) Exenatide
- B) Sitagliptin
- C) Acarbose
- D) Miglitol

Q3: Which drug dose you should adjust when prescribing to your T2D patient who's kidneys are insufficient?

- A) Exenatide
- B) Sitagliptin
- C) Acarbose
- D) Miglitol

Q4: patient with t2dm on oral hypoglycemics was admitted to the clinic with megaloblastic anemia, which one of the following oral hypoglycemics was he taking?

- A) Exenatide
- B) metformin
- C) Acarbose
- D) Tolbutamide

Q5: which of the following is the MOA for Pioglitazone

- A) is glucagon-like peptide-1 (GLP-1) agonist
- B) blocking of ATP-sensitive K channels
- C) Increase sensitivity of target tissues to insulin
- D) competitively inhibit carbohydrates digestion

Pharmacology Leaders Tuqa Al-Kaff & Abdullah Al-Anzi

Pharmacologyteam1@gmail.com