MINERALOCORTICOIDS

Dr. Eman El Eter

Hormones of Adrenal gland

Cortex: (Secretes steroid hormones)

- Glucocorticoids.
- Mineralocorticoids.
- Androgens.
- Medulla (Amino acid secretions)
 - Catecholamines

Mineralocorticoids:

Aldosterone

- A steroid hormone.
- Essential for life.
- Responsible for regulating Na⁺ reabsorption in the distal tubule and the cortical collecting duct
- Target cells are called "principal (P) cell".
- It also affects Na+ reabsorption by sweat, salivary and intestinal cells. Stimulates synthesis of more Na/K-ATPase pumps.
- Much of secreted aldosterone is converted in the liver to tetrahydroglucuroind derivative.

Aldosterone, cont.....

- Aldosterone exerts the 90% of the mineralocorticoid activity.
- Cortisol also have mineralocorticoid activity, but only $1/400^{\text{th}}$ that of aldosterone.
- Secreted by Zona glomerulosa.

Aldosterone action

 Maintains extracellular fluid volume by conserving body sodium. Aldosterone stimulates sodium & potassium transport in sweat glands, salivary glands, & intestinal epithelial cells.

Aldosterone action

- Aldosterone stimulates the active secretion of potassium from the distal tubular cell into the urine.
- Hence aldosterone is critical for disposal of daily dietary potassium load at normal plasma potassium concentrations.
- Stimulates secretion of H+ by the kidney.

Regulation of aldosterone secretion

Direct stimulators of release:
High plsama potassium level
ACTH

- Indirect stimulators of release:
 - Ang II (RAAS): this system is activated by renal ischemia and low Na+ conc. At macula densa.

Regulation of Aldosterone secretion

Pathway by which an increased potassium intake induces greater potassium excretion mediated by aldosterone Potassium stimulates aldosterone synthesis by depolarizing zona glomerulosa cell membranes

Role of ACTH in Aldosterone synthesis/release

- ACTH also stimulates aldosterone synthesis.
- However the ACTH stimulation is more transient than the other stimuli and is diminished within several days.
- Aldosterone levels fluctuate diurnally—highest concentration being at 8 AM, lowest at 11 PM, in parallel to cortisol rhythms.

Juxtaglomerular apparatus (JGA)

JGA

A specialized collection of two cell types:

- Macula densa cells
- Juxtaglomerular cells

located at the juncture of the afferent and efferent arterioles with a portion of the distal convoluted tubule of the nephron of the kidney

JGA

Macula densa cells –

- Specialized chemoreceptor cells in the wall of the distal convoluted tubule
- respond to changes in solute concentration (especially sodium levels) in the tubular fluid.
- Information is conveyed to the juxtaglomerular cells which will adjust their output of renin accordingly.

Juxtaglomerular cells

- Specialized smooth muscle cells which act as mechanoreceptors which stretch in response to increases in the blood pressure of the afferent arteriole
- synthesize and secrete the enzyme renin

Renin-angiotensin-aldosterone axis

- Principal factor controlling Ang II levels is renin release.
- Decreased circulating volume stimulates renin release via:
 - Decreased BP (symp effects on JGA).
 - Decreased [NaCl] at macula densa ("NaCl sensor")
 - Decreased renal perfusion pressure ("renal" baroreceptor)

Role of Angll in Aldosterone synthesis

- Angiotensin II acts on the zona glomerulosa to stimulate aldosterone synthesis.
- Angiotensin II acts via increased intracellular cAMP to stimulate aldosterone synthesis.

Adrenal insufficiency

Addison's Disease

- Inadequate amounts of adrenocortical hormones due to bilateral destruction of adrenal cortices.
- Causes;
- □ Autoimmunity.
- D TB
- Radiation.
- Malignancy.

Mineralocorticoid Deficiency

Lack of aldosterone:

- Increased loss of sodium, chloride, water
- Decrease ECF volume
- Hyperkalemia
- Mild acidosis
- Plasma sodium decreases and may lead to circulatory collapse. Decrease cardiac output shock death within 4 days to a 2 weeks if not treated.

Hyperaldosteronism

Hyperaldosteronism can be caused by:

Primary overproduction of aldosterone in conditions such as Conn's syndrome. Clinical Features of Primary Aldosteronism

- Hypertension.
- 🗆 Hypokalemia
- Nocturnal polyuria & polydipsia
- Increased tubular (intercalated cells) hydrogen ion secretion, with resultant mild alkalosis.
- Neuromuscular manifestations
 - weakness, paresthesia
 - intermittent paralysis

Tests Confirming the Diagnosis of Primary Aldosteronism

Plasma supine aldosterone at 0800h > 15 ng/dl
Urinary aldosterone metabolites

 18-Monoglucuronide
 20 ug/24h
 Tetrahydroaldosterone
 65 ug/24h

NaCl infusion/ suppression test -- PA > 10 ng/dl