

Pathogenesis of Cerebral Infarction at Cellular & Molecular Levels

OBJECTIVES:

- Identify the possible <u>cell death mechanisms</u> implicated in the pathogenesis of ischemic brain injury
- •Acquire the knowledge of the important role played by <u>oxidative stress and free radicals</u> In the pathogenesis of cerebral infarction
- •Understand the various factors involved in ischemia-induced metabolic stress
- •Identify the Neurochemical changes involved in cerebral ischemia

<u>calcium-induced</u> <u>calpain-mediated</u> <u>proteolysis of</u> brain tissue*

Leading to

Necrosis:

Commonly observed <u>early</u> after <u>severe</u> ischemic insults

Cell death mechanisms in cerebral ischemia:

<u>Substrates for calpain</u> <u>include:</u>

- ✓ Cytoskeletal proteins
- ✓ <u>Membrane proteins</u>
- ✓ Regulatory and signaling proteins

*Explanation:

Calpains are cysteine proteases (perform proteolysis) whose enzymatic activities are strictly controlled by Ca²⁺.

They have a physiological role, however when Ca²⁺ levels are high, calpains participate in cell death.

Apoptosis:

occurs with more mild insults and with longer survival periods

Biochemical Responses to Ischemic Brain Injury

Oxidative stress

2 Metabolic stress

3 Neurochemical response

1 Oxidative stress

Reactive Oxygen Species (ROS)

Formed as by-product of aerobic metabolism, reactions with drugs and environmental toxins or decreased antioxidant levels create oxidative stress

Oxygen-derived free radicals:

e.g., Superoxide and hydroxyl radicals

Non-free radical Hydrogen peroxide A condition in which cells are subjected to excessive levels of Reactive Species
(Oxygen or nitrative species) and they are unable to counterbalance their deleterious effects with antioxidants.*

It has been implicated in the <u>ageing process</u> & in many diseases (e.g., atherosclerosis, cancer, stroke and neurodegenerative diseases)

*In other words: Imbalance between oxidant production and antioxidant mechanisms

Antioxidant Mechanisms

Enzymes:

- Superoxide dismutase
- Catalase
- Glutathione system includes: (glutathione, NADPH, reductase, peroxidase & selenium)

These enzymes serve as a defense system to guard against the toxic effect of ROS.

They are required for essential processes as learning and memory formation

They regulate neuronal signaling in both CNS & PNS

Modulate synaptic transmission and non-synaptic communication between neurons & glia

Physiological roles of ROS and RNS¹ in the brain

In case of increased neuronal activity

They diffuse to the myelin sheath of oligodendrocytes

Activate protein kinase C (PKC)

Post-translational modification² of myelin basic protein (MBP) by <u>phosphorylation</u>

Note:

ROS and RNS are commonly (normally) generated by microglia and astrocytes.

1"RNS": Reactive nitrative species.
2: modification of proteins after translation e.g. phosphorylation or glycosylation

Why is the brain highly susceptible to ROS-induced damage?

High oxygen consumption

High concentrations of peroxidisable lipids

Occurrence of reactions involving dopamine and glutamate oxidase in the brain²

Low levels of protective antioxidants

High levels of iron

(act as pro-oxidant¹ under pathological conditions)

- 1: Pro-oxidant: They produce oxidative stress either by producing ROS or inhibiting antioxidant
- 2: These two enzymes produce free radicals through the pathway of glutamate and dopamine synthesis

Effects of ROS in ischemic stroke:

Vascular effects:

- Altered vascular tone and cerebral blood flow
 - Increased platelets aggregability.
- Increase endothelial cells permeability => Edema

Molecular effects:

- ☐ Lipid peroxidation¹
- ☐ Protein denaturation
- ☐ Inactivation of enzymes
- ☐ DNA damage
- ☐ Cell signaling effects

(release of intracellular Ca²⁺)

- ☐ Cytoskeletal damage
- Chemotaxis

1: Oxidative degradation of lipids, affect polyunsaturated fatty acids.

The role of Nitric Oxide (NO)¹ in the pathophysiology of cerebral ischemia

It may be beneficial or detrimental, depending upon where and when NO is released.

In case of Ischemia => <u>Abnormal NO</u> production

NO produced by:

Endothelial NOS (eNOS)	Neuronal NOS (nNOS)	Inducible NOS (iNOS)
Improve vascular dilatation and perfusion + Relaxation of smooth muscles.	Detrimental effect.	
Beneficial effect.		

Other actions of NO

- Prevent platelets aggregation
- Function as a neurotransmitter in the brain
- Modulate tumoricidal and bactericidal actions of macrophages
- 1: A highly diffusible stable gas synthesized from the amino acid <u>Arginine</u> by an enzyme called <u>Nitric oxide</u> synthase (NOS)

Metabolic stress

Biochemical changes in The brain during ischemia (Ischemic cascade)

Ischemia

 \checkmark Blood flow, O₂ and nutrients in cerebral arteries

Energy depletion (No ATP & creatine phosphate)

Inhibition of ATP-defendant ion pumps (Membrane depolarization)

Lactic acid in neurons

(because they turn to anaerobic glycolysis)

- ☐ Ca²⁺ Influx (translocation from extracellular to intracellular spaces)
- Na+ influx
- ☐ K+ efflux (K+-induced release of excitatory amino acids)

Acidosis

Promote pro-oxidant effect

↑Rate of O₂ conversion into free radicals

What are the consequences of Increased intracellular Ca²⁺?

Ca²⁺ influx will lead to activation of several enzymes which have detrimental effect such as:

- 1- ATPase => Degradation of ATP => Lead to further decrease of ATP.
- 2- Phospholipase => Lipolysis => Membrane damage.
- 3- Proteases (e.g. Calpain) => proteolysis => Breakdown of cytoskeleton
- 4- Endonuclease => DNA cleavage => DNA fragmentation .

Biochemical basis of pharmacological intervention

Neurochemical response

Following cerebral ischemia, extracellular levels of various neurotransmitters are increased **Glutamate Glycine GABA Dopamine**

1- Which of the following cell death mechanism happen early after severe ischemic insults? A- Apoptosis B- Necrosis C- Dystrophic calcification D- None of them	6- Which ONE of the following events in the ischemic cascade will promote the pro-oxidant effect: A- Ca efflux. B- Alkalosis. C- Turning of the neurons to anaerobic glycolysis which result in acidosis. D- Increased extracellular levels of several neurotransmitters.	
2- Which ONE of the following is NOT a molecular effect of ROS: A- DNA damage. B- Lipid peroxidation C- Activation of enzymes D- Chemotaxis	7- Which ONE of the following changes can be seen in the vasculature of a stroke patient induced by reactive oxygen species? A- Vasoconstriction B- Hypocoagulability C- Improved cerebral blood flow D- Increased endothelial permeability 8- Brain biopsy of a stroke patient showed destruction of cytoskeleton proteins. This proteolysis is most likely mediated by: A- Calpain . B- Endonuclease. C- ATPase	
3- Oxidative stress has been implicated in which ONE of the following diseases: A- Parkinson disease B- Diabetes mellitus C- Vitamin D deficiency D- Night Blindness.		
 4- All the following statements are true EXCEPT: A- High Oxygen consumption of the brain makes it more susceptible to ROS-induced damage. B- The brain has low levels of Pro-oxidant as a protective property. C- ROS and RNS are generated normally by microglia and astrocytes. D- ROS and RNS are required for essential processes as learning and memory formation. 	D- Phospholipase. 9- Protein phosphorylation in metabolic stress is due to increased levels of: A- Intracellular K+ B- Extracellular Ca C- Protein kinase A (PKA) D- Protein kinase C (PKC)	
5- Which ONE of the following enzymes is involved in anti-oxidant mechanisms: A- Calpain B- Endonuclease C- ATPase D- Superoxide dismutase	10- Which ONE of the following forms of NOS is associated with inflammatory processes: A- iNOS B- eNOS C- nNOS D- All of them ANSWERS: 1) B 2) C 3)A 4)B 5)D 6)C 7)D 8)A 9)D 10)A	

If you have any questions or comments, don't hesitate to contact us

Biochemistry433@gmail.com

Thank You!

Done by:
Mohammed AlNafisah
Sara AlDokhayel
Maha Alrajhi

