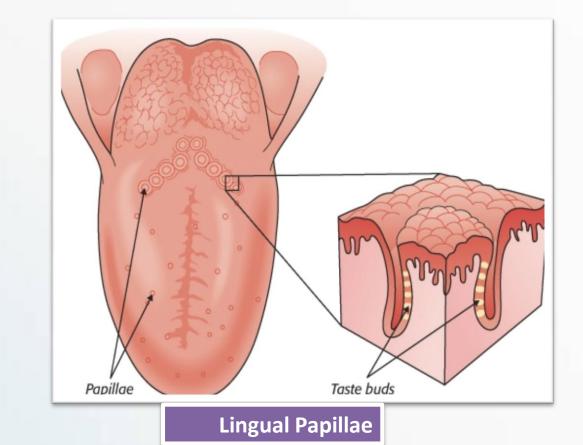
15 Physiology of Taste & Smell

Sources

CNS

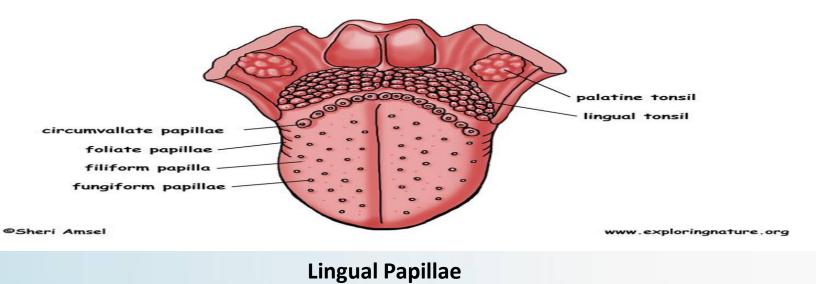
- -Male slides
- -Female slides


Taste sensation

- Taste is received by "Taste Buds" which contain huge amount of taste receptors.
- These Buds are distributed throughout the whole oral cavity including:
 1/Tongue (mostly)
 2/Palate
 3/Inner surface of cheeks

Papillae : are structures projecting on the surface of the tongue , it gives the tongue its <u>rough nature</u>.

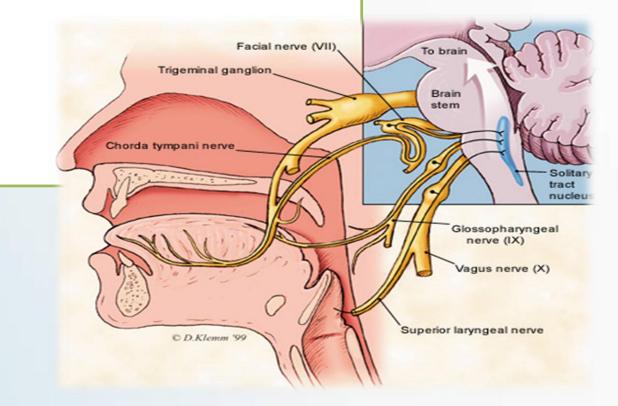
Each papilla contain numerous taste buds. 3 types:


- Filliform papilla
- Fungiform papilla
- Circumvallate papilla

Type of papilla	Shape	Distribution	Presence of taste buds	Number
Filliform	Sharp	most of the front two thirds of the tongue's surface	Not present	Most numerous
Fungiform	Mushroom-like	on the upper surface of the tongue	Present	Less than Filliform
Circumvallate	Dome-shaped	immediately in front of the foramen cecum	Present	From 8-12 only

Taste Buds and the Tongue

<u>Note</u>: There are no Taste Buds on the dorsum of the tongue.

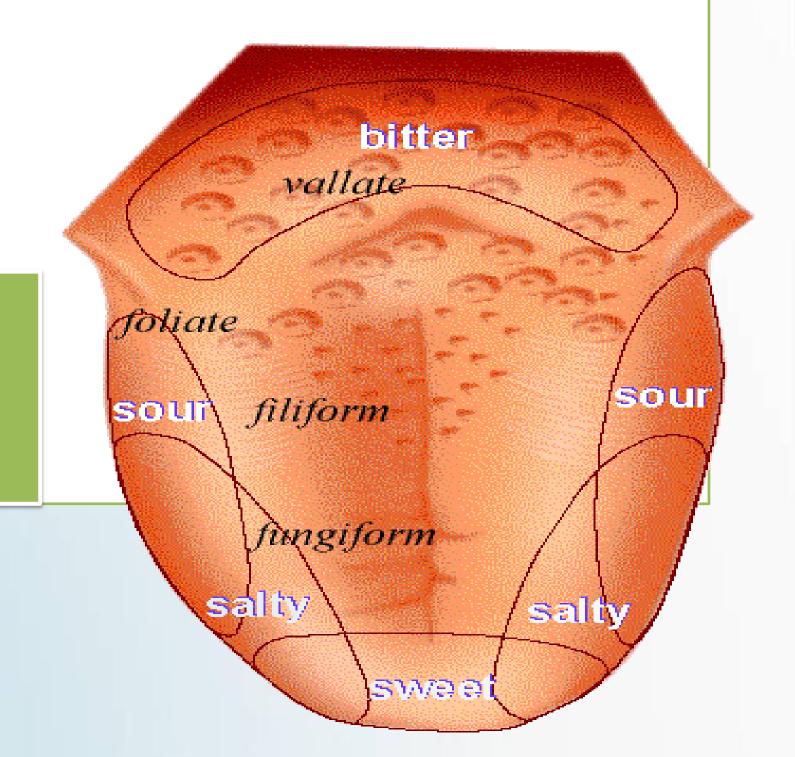


- Each taste bud contains too many "<u>Gustatory cells</u>". Gustatory cells are cells with <u>microvilli</u> arise from its surface, in between there are <u>supporting cells</u>.
- These microvilli act as receptors for chemicals(food), to transmit an impulse to the <u>brain</u>.
- The Impulses are carried from Gustatory cells along the pathway of taste sensation through 3 <u>Cranial Nerves</u>.

Each supply different part.

1/Facial (Anterior 2/3 of tongue).2/Glossopharyngeal (Posterior 1/3 of tongue).3/Vagus (Palate, pharynx, epiglottis).

Note: Microvilli can't respond to chemicals without the help of saliva (They dissolve the chemical molecules to stimulate the receptors well).



Taste buds are grouped in different locations according to <u>the taste that</u> <u>stimulated by.</u>

There are **4 main tastes**, and each is received in different place in the tongue.

1/Sweet (tongue tip)
2/Sour (tongue margins)
3/Bitter (back of tongue)
4/Salty (widely distributed)

Note: An additional taste flavor called (Umami), it's a mixture of more than one flavor (e.g. Meat)

Each taste flavor is mediated by <u>special chemicals</u>.

1/Sweet:

Sugar – Saccharide – Amino acids 2/Sour:

H ions - Acids

3/Bitter:

Alkaloids

4/Salty:

Salt – Ions – Metals

5/Umami:

Glutamate (Meats: Steak)

Note:

1-Combination between molecules and receptors are week (since taste can be easily abolished by washing mouth with water

2-Taste fibres from the three cranial nerves form tractus solitarius

Pathway:

- These chemicals are dissolved in saliva.
 After that they stimulate the microvilli (cilia) of Gustatory cells to initiate an Action potential.
- Action potential begins in gustatory cells and ends reaching the Cortex passing some structures:

1/Gustatory cells.

By cranial nerves to:

2/Tractus solitarius in medulla.

By Medial lemniscus to:

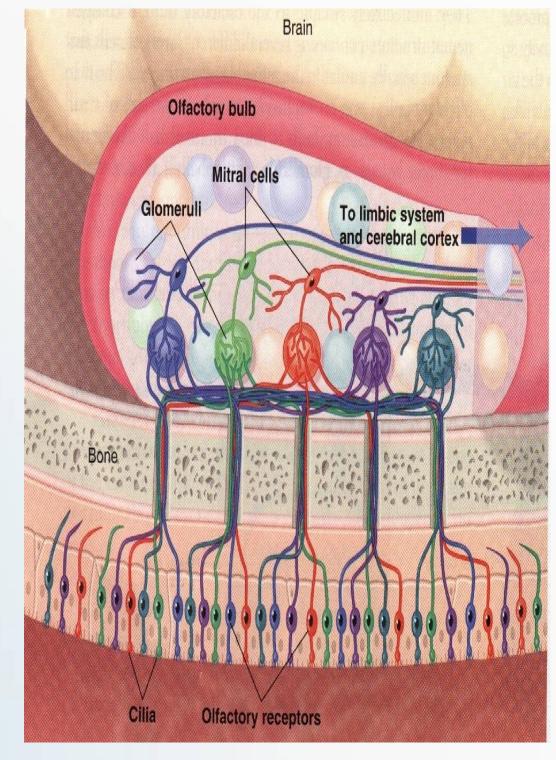
3/Ventral posterior medial nucleus of the Thalamus.

By Thalamic radiation to: 4/Taste cerebral cortex(Insula)

New Pathological terms

- Ageusia (complete loss of taste)
- **Dysgeusia** (disturbed taste)
- Hypergeusia (Adrenal insufficiency) : Due to parasympathetic dominance which leads to increase in saliva production.
- Hypogeusia : Due to some disease or Drugs such as (Captopril) & (Pinecillamine) that contain sulfhydryl group.

SMELL Sensation


•Olfaction (the sense of smell):

-There are olfactory receptors (bipolar neurons) in the "<u>Roof</u>" of each nasal cavity, which contain the (olfactory hairs).

-The chemicals must be <u>dissolved</u> in the mucus to be detected.

-Impulses are <u>transmitted</u> via olfactory nerve to be interpreted in the olfactory cortex of the brain.

-Axons collected in <u>bundles</u> called fila olfactoria

Olfactory Bulb

Physiology of olfaction

-Human can differentiate between 2000-4000 odours.

-Molecules dissolve in mucus layer \implies to combine with the receptors \implies that stimulate adenylyl cyclase \implies lead to increase intracellular cAMP \implies result in opening in Na channels \implies AP.

- Olfactory pathway:
 - -Fila Olfactoria* enters olfactory bulb to make synapses with
 - mitral & tufted cells
 - -Impulses travel along the olfactory tracts to the limbic system^{*}, also involved in emotions and memory
 - -and interpreted in the olfactory cortex (Deep in temporal lobe & base of frontal lobe)

	Strial type	Ending
Mitral cells	Lateral & intermediate stria *	Ipsilateral cortex
Tufted cells	Medial stria	In granular cells (contralateral) opposite side
*Axons collected in Responsible for emotions fibres ascend along the w of the brain reaching th	& memory. white matter	

New Pathological terms

Anosmia: loss of smell sensation. Due to damage to olfactory epithelium

<u>Parosmia</u>: Alteration in smell sensation.

<u>Hyperosmia</u>: increase in smell sensation (due to adrenal insufficiency).

<u>Hyposomia</u>: decreased smell sensation (due to Vitamin A deficiency).

Done by : Maan Alherbish Sakher Albader Revised by : Areej Abdullah Rahma alshehri

Pht433@gmail.com

CNS Block