LECTURE 3

PHOTO TRANSDUCTION IN LIGHT AND DARK

DR SYED SHAHID HABIB
MBBS DSDM PGDCR FCPS
Professor
Dept. of Physiology
College of Medicine & KKUH

OBJECTIVES

At the end of this lecture you should be able to:

- Explain functional properties of rods and cones in scotopic and photopic vision
- Know the convergence and its value
- Describe phototransduction process for rods and cones in light and dark and the ionic basis of these responses
- Enumarate Synaptic mediators at retina
- Describe Rhodopsin regeneration
- Define nyctalopia, dark and light adaptation

Low convergenc in cones:

cones synapse with →one bipolar cell →one ganglion cell

It increases visual acuity & decreases sensitivity to light

High convergence of

rods: 300:1It decreases visual acuity & increases sensitivity to light

Receptors of vision (Rods&cones)

- Outer segment (modified cilia) has disks full of photosensitive pigment (rhodopsin) react with light to initiate action potential
- -In cones is conical, small and contain 3 types of rhodopsin
- in rods it is big, rode like and contain one type of rhodopsin
- -There are Na channels in the outer segment
- Inner segment full of mitochondria (source of energy for Na-K pump), it is thick in cones
- There is Na-K pump in inner segment

Comparison of Rods and Cones

Rods

- Abundant in the periphery of the retina
- About 120 million
- Contain Scotopsin
- Best for low light conditions
- See black/white and shades of gray

Cones

- Abundant in fovea
- About 6 million
- •Contain Photopsin (3Types)
- Best for bright light conditions
- ·See all colors

Photochemistry of Vision

1-In Rods: it is rhodopsin:

[Scotopsin protein (opsin) + retinal (retinene 1 = Vit A)]

- Called visual purple (Rhodopsin of the <u>rods</u> most strongly absorbs green-blue light and, therefore, appears reddish-purple
- 2- In cones there are 3 types of Photopsins (I,II & III):
 [Photopsin protein (opsin) + retinal (retinene 1 = Vit A)]
- It is stored in disks of rods at outer segment
- It forms (90% of its protein)
- -In dark rhodopsin is in 11-cisretinal form (INACTIVE) It is light sensitive form which increase sensitivity of rods to light

SEQUENCE OF EVENTS IN PHOTOTRANSDUCTION OF RODS AND CONES

SEQUENCE OF EVENTS IN RODS AND CONES ACTIVATED BY LIGHT

- 1. The Photon transforms 11-cis retinal of rhodopsin to metarhodopsin II, [active form of rhodopsin in 11-trans retinal form]
- 2. The activated rhodopsin → activates transducin [G Protein]
- 3. Activated transducin →activates phosphodiesterase.
- 4. Activated phosphodiesterase → converts cGMP to 5-GMP → Decrease in cGMP → closes Na Channels
- 5. Leads to Hyperpolarization → ↓ Glutamate
- 6. Rhodopsin kinase →inactivates metarhodopsin II

DARK ADAPTATION

If a person moves from brightly lighted surroundings to a dim lighted area the retinas slowly become more sensitive to light as the individual becomes "accustomed to the dark" [20 min] for dark vision (only gross features but no details or colors

Rapid (5 minutes) due to adaptation of <u>cones</u> in fovea (sensitivity of <u>cones</u> to light increases)

Less rapid (20 min) due to adaptation of <u>rodes</u> in the peripheral retina (sensitivity of rodes to light increases)

- More light sensitive pigments
- ↓ In Visual threshold
- ↑ In Visual sensitivity
- Na channels remain open
- Na current continues

LIGHT ADAPTATION

If a person moves from dim to enlightened area light seems intensely and even uncomfortably bright until the eyes adapt to the increased illumination and the visual threshold rises in 5 minutes.

- · Less light sensitive pigments
- ↑ In Visual threshold
- ↓ In Visual sensitivity
- · Na channels remain close
- · Na current decreases

Why radiologists & aircraft pilots wear red goggles in bright light?

Red light mainly stimulates the cones & rods to some extent, so red goggles for rods act as dimlight, so with it rods are adapted to darkness & form large amounts of rhodopsin while the person is in bright light & when person enters a dark place he can see well & do not have to wait for 20 minutes for dark adaptation.