

Color Vision 3 primary colors

Tricolor Mechanism of Color Detection: When red, green, and blue monochromatic lights are appropriately mixed in different combinations

★Each cone system respond to its color at a different threshold than needed to sense other colors (red cones respond to red or yellow color at a lower threshold than to green color)

♦ Perception of white is due to equal stimulation of blue & red & green cones. There is no wave length corresponds to white, white is a combination of all wave lengths

COLOR VISION THEORY (YOUNG-HELMHOLTZ THEORY)

- There are 3 kinds of cone photopigments & are sensitive to one of the 3 primary colors
- Blue cone system: Conatins S pigment (blue sensation pigment) which respond to short wave length (440nm senses the blue color)
- Green cone system: Contains M pigment (green sensation pigment) which respond to middle wave length (535nm senses the green color & less to yellow) & absorb light at the green portion.
- Red cone system: Contains L pigment (red sensation pigment) which respond to large wave length at or > 535 nm so senses the red & yellow color & absorb light at the red portion.

NEURAL MECHANISMS OF COLOR VISION Color is mediated by ganglion cells that subtract or add input from one type of cone to input from another type 3 TYPES OF NEURAL PATHWAYS PROJECT TO BLOBS IN V1 and layer 4: *red- green pathway that signals differences between L and M-cone Responses *blue-yellow pathway that signals differences between S-cone and the sum of L- and M-cone responses *luminance pathway that signals the sum of L- and M-cone

COLOR BLINDNESS

Red-green blindness:-

normal color vision.

- Green & red cones see different colors between wave length 525-675 nm & distinguish them.
- If either of these cones are absent, the person can not distinguish 4 colors (red –green-yelloworange) & he can not distinguish red from green (primary colors)
- It is x-linked disease (the gene is on x chromosome). Females from color blind fathers are carriers and transmit the disease to ½ of their sons.

Chromatic theories of color vision

- Trichromats:-have 3 cone pigments(normal or have slight weakness in detecting red or green or blue color
- Dichromats:-have only 2 cone pigments systems only so he is completely blind to red or green or blue (so they may have protanopia, deuteranopia,or tritanopia) they get color by mixing only 2 of the primary colors.
- Monochromats:-have only one cone system or loss of all so see only blackor grey or have no color perception.

NOPIA (BLINDNESS) NOMALY (WEAKNESS)

- 1-Protanopia (red-blindness): no red cones system so person has vision in shorter spectrum wave lengths. weakness → protanomaly
- 2-Deutranopia (green -blindness):-no green cones system-so person see only long & short wave length). weakness → deutranomaly.
- 3-Tritanopia (blue -blindness) : no blue cones system. weakness → tritanomaly.

